Tissue Image Analytics Center, University of Warwick, United Kingdom.
Department of Computer Science, University of Middlesex, United Kingdom.
Artif Intell Med. 2023 Sep;143:102628. doi: 10.1016/j.artmed.2023.102628. Epub 2023 Jul 17.
Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89±0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS.
恶性间皮瘤是一种难以诊断且高度致命的癌症,通常与石棉暴露有关。它可以大致分为三种亚型:上皮样、肉瘤样和混合双相亚型,其中前两种亚型的重要成分都存在。早期诊断和确定亚型可以为治疗提供信息,并有助于改善患者的预后。然而,恶性间皮瘤的亚型分类,特别是从常规组织学切片中识别过渡特征,具有很高的观察者间变异性。在这项工作中,我们提出了一种端到端的多实例学习(MIL)方法来进行恶性间皮瘤的亚型分类。该方法使用自适应实例基采样方案对图像补丁的袋子进行深度卷积神经网络训练,与基于最大或前 N 个的 MIL 方法相比,该方案允许在更广泛的相关实例上进行学习。我们还研究了增强实例表示,以包括来自细胞分割的聚合细胞形态特征。所提出的 MIL 方法能够识别特定组织区域的恶性间皮细胞亚型。由此,可以根据肉瘤样和上皮样区域的优势对样本进行连续表征,从而避免目前使用的亚型进行任意和高度主观的分类。实例评分还可以研究肿瘤异质性并识别与不同亚型相关的模式。我们已经在一个包含 234 个组织微阵列核心的数据集上评估了所提出的方法,该任务的 AUC 为 0.89±0.05。数据集和开发的方法可在 https://github.com/measty/PINS 上获取。