Suppr超能文献

自交互式学习:用于计算病理学中分子特征预测的多尺度组织形态学特征融合与演化

Self-interactive learning: Fusion and evolution of multi-scale histomorphology features for molecular traits prediction in computational pathology.

作者信息

Hu Yang, Sirinukunwattana Korsuk, Li Bin, Gaitskell Kezia, Domingo Enric, Bonnaffé Willem, Wojciechowska Marta, Wood Ruby, Alham Nasullah Khalid, Malacrino Stefano, Woodcock Dan J, Verrill Clare, Ahmed Ahmed, Rittscher Jens

机构信息

Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.

Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.

出版信息

Med Image Anal. 2025 Apr;101:103437. doi: 10.1016/j.media.2024.103437. Epub 2025 Jan 3.

Abstract

Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales. This work proposes a novel multiple-instance learning (MIL) framework capable of WSI-based cancer morpho-molecular subtyping by fusion of different-scale features. Our method, debuting as Inter-MIL, follows a weakly-supervised scheme. It enables the training of the patch-level encoder for WSI in a task-aware optimisation procedure, a step normally not modelled in most existing MIL-based WSI analysis frameworks. We demonstrate that optimising the patch-level encoder is crucial to achieving high-quality fine-grained and tissue-level subtyping results and offers a significant improvement over task-agnostic encoders. Our approach deploys a pseudo-label propagation strategy to update the patch encoder iteratively, allowing discriminative subtype features to be learned. This mechanism also empowers extracting fine-grained attention within image tiles (the small patches), a task largely ignored in most existing weakly supervised-based frameworks. With Inter-MIL, we carried out four challenging cancer molecular subtyping tasks in the context of ovarian, colorectal, lung, and breast cancer. Extensive evaluation results show that Inter-MIL is a robust framework for cancer morpho-molecular subtyping with superior performance compared to several recently proposed methods, in small dataset scenarios where the number of available training slides is less than 100. The iterative optimisation mechanism of Inter-MIL significantly improves the quality of the image features learned by the patch embedded and generally directs the attention map to areas that better align with experts' interpretation, leading to the identification of more reliable histopathology biomarkers. Moreover, an external validation cohort is used to verify the robustness of Inter-MIL on molecular trait prediction.

摘要

从组织形态学预测疾病相关分子特征为精准医学带来了巨大机遇。尽管组织病理学图像中存在丰富信息,但从标准的全切片图像(WSI)中提取细粒度分子特征并非易事。由于缺乏可能跨越多个尺度的亚型和上下文组织形态学特征的注释,这项任务变得更加复杂。这项工作提出了一种新颖的多实例学习(MIL)框架,该框架能够通过融合不同尺度的特征,基于WSI进行癌症形态分子亚型分析。我们的方法名为Inter-MIL,采用弱监督方案。它能够在任务感知优化过程中训练WSI的补丁级编码器,这一步骤在大多数现有的基于MIL的WSI分析框架中通常没有被建模。我们证明,优化补丁级编码器对于实现高质量的细粒度和组织级亚型分析结果至关重要,并且比与任务无关的编码器有显著改进。我们的方法部署了伪标签传播策略来迭代更新补丁编码器,从而学习判别性亚型特征。这种机制还能够在图像块(小补丁)内提取细粒度注意力,这是大多数现有的基于弱监督的框架中基本被忽略的任务。使用Inter-MIL,我们在卵巢癌、结直肠癌、肺癌和乳腺癌的背景下进行了四项具有挑战性的癌症分子亚型分析任务。广泛的评估结果表明,在可用训练幻灯片数量少于100的小数据集场景中,Inter-MIL是一个用于癌症形态分子亚型分析的强大框架,与最近提出的几种方法相比具有卓越性能。Inter-MIL的迭代优化机制显著提高了补丁嵌入学习到的图像特征的质量,并通常将注意力图引导到与专家解释更好对齐的区域,从而识别出更可靠的组织病理学生物标志物。此外,使用外部验证队列来验证Inter-MIL在分子特征预测方面的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验