Neri Luca, Lonati Caterina, Titapiccolo Jasmine Ion, Nadal Jennifer, Meiselbach Heike, Schmid Matthias, Baerthlein Barbara, Tschulena Ulrich, Schneider Markus P, Schultheiss Ulla T, Barbieri Carlo, Moore Christoph, Steppan Sonia, Eckardt Kai-Uwe, Stuard Stefano, Bellocchio Francesco
Clinical and Data Intelligence Systems-Advanced Analytics, Fresenius Medical Care Deutschland GmbH, Vaiano Cremasco, Italy.
Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Front Nephrol. 2022 Jul 12;2:922251. doi: 10.3389/fneph.2022.922251. eCollection 2022.
Cardiovascular (CV) disease is the main cause of morbidity and mortality in patients suffering from chronic kidney disease (CKD). Although it is widely recognized that CV risk assessment represents an essential prerequisite for clinical management, existing prognostic models appear not to be entirely adequate for CKD patients. We derived a literature-based, naïve-bayes model predicting the yearly risk of CV hospitalizations among patients suffering from CKD, referred as the CArdiovascular, LIterature-Based, Risk Algorithm (CALIBRA).
CALIBRA incorporates 31 variables including traditional and CKD-specific risk factors. It was validated in two independent CKD populations: the FMC NephroCare cohort (European Clinical Database, EuCliD) and the German Chronic Kidney Disease (GCKD) study prospective cohort. CALIBRA performance was evaluated by c-statistics and calibration charts. In addition, CALIBRA discrimination was compared with that of three validated tools currently used for CV prediction in CKD, namely the Framingham Heart Study (FHS) risk score, the atherosclerotic cardiovascular disease risk score (ASCVD), and the Individual Data Analysis of Antihypertensive Intervention Trials (INDANA) calculator. Superiority was defined as a ΔAUC>0.05.
CALIBRA showed good discrimination in both the EuCliD medical registry (AUC 0.79, 95%CI 0.76-0.81) and the GCKD cohort (AUC 0.73, 95%CI 0.70-0.76). CALIBRA demonstrated improved accuracy compared to the benchmark models in EuCliD (FHS: ΔAUC=-0.22, p<0.001; ASCVD: ΔAUC=-0.17, p<0.001; INDANA: ΔAUC=-0.14, p<0.001) and GCKD (FHS: ΔAUC=-0.16, p<0.001; ASCVD: ΔAUC=-0.12, p<0.001; INDANA: ΔAUC=-0.04, p<0.001) populations. Accuracy of the CALIBRA score was stable also for patients showing missing variables.
CALIBRA provides accurate and robust stratification of CKD patients according to CV risk and allows score calculations with improved accuracy compared to established CV risk scores also in real-world clinical cohorts with considerable missingness rates. Our results support the generalizability of CALIBRA across different CKD populations and clinical settings.
心血管疾病是慢性肾脏病(CKD)患者发病和死亡的主要原因。尽管人们普遍认识到心血管风险评估是临床管理的重要前提,但现有的预后模型似乎并不完全适用于CKD患者。我们基于文献推导了一种朴素贝叶斯模型,用于预测CKD患者心血管住院的年度风险,称为基于文献的心血管风险算法(CALIBRA)。
CALIBRA纳入了31个变量,包括传统和CKD特异性风险因素。它在两个独立的CKD人群中进行了验证:FMC肾科护理队列(欧洲临床数据库,EuCliD)和德国慢性肾脏病(GCKD)研究前瞻性队列。通过c统计量和校准图评估CALIBRA的性能。此外,将CALIBRA的辨别力与目前用于CKD心血管预测的三种经过验证的工具进行了比较,即弗雷明汉心脏研究(FHS)风险评分、动脉粥样硬化性心血管疾病风险评分(ASCVD)和抗高血压干预试验个体数据分析(INDANA)计算器。优势定义为ΔAUC>0.05。
CALIBRA在EuCliD医学登记处(AUC 0.79,95%CI 0.76-0.81)和GCKD队列(AUC 0.73,95%CI 0.70-0.76)中均显示出良好的辨别力。与EuCliD(FHS:ΔAUC=-0.22,p<0.001;ASCVD:ΔAUC=-0.17,p<0.001;INDANA:ΔAUC=-0.14,p<0.001)和GCKD(FHS:ΔAUC=-0.16,p<0.001;ASCVD:ΔAUC=-0.12,p<0.001;INDANA:ΔAUC=-0.04,p<0.001)人群中的基准模型相比,CALIBRA显示出更高的准确性。对于存在变量缺失的患者,CALIBRA评分的准确性也很稳定。
CALIBRA根据心血管风险为CKD患者提供了准确且可靠的分层,并且与已建立的心血管风险评分相比,在缺失率相当高的真实世界临床队列中也能实现更高准确性的评分计算。我们的结果支持CALIBRA在不同CKD人群和临床环境中的通用性。