Suppr超能文献

用于鉴别具有黏液特征的肺腺癌和转移性结直肠癌的决策树的开发与验证

Development and validation of a decision tree for distinguishing pulmonary adenocarcinomas with mucinous features and metastatic colorectal adenocarcinoma.

作者信息

Wein Alexander N, Lin Chieh-Yu, Ritter Jon H, Bernadt Cory T

机构信息

Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.

出版信息

Cancer Cytopathol. 2023 Dec;131(12):781-790. doi: 10.1002/cncy.22758. Epub 2023 Sep 7.

Abstract

BACKGROUND

Diagnosis of mucinous carcinomas in the lung on transbronchial biopsy or fine-needle aspiration (FNA) samples can be difficult for the pathologist, because primary and metastatic tumors can have similar morphological, immunohistochemical, and molecular characteristics. Correct diagnosis is key to determine appropriate therapy and to distinguish primary from metastatic disease. This distinction often falls to the pathologist in patients with a history of mucinous adenocarcinoma of the colon. Despite its drawbacks, immunohistochemistry is often employed to help assign a primary site for mucinous adenocarcinomas in the lung. However, the published data in this regard is limited to studies that use only a handful of markers.

METHODS

The authors examined the staining characteristics and heterogeneity of CK7, TTF-1, NapsinA, CK20, CDX2, and SATB2 in resection specimens of pulmonary adenocarcinomas with mucinous features and metastatic colorectal adenocarcinoma.

RESULTS

Based on the heterogeneity, sensitivity, and specificity in this cohort, the authors developed a decision tree based on TTF-1, SATB2, CDX2, and CK7 to categorize tumors as primary or metastatic lesions. Validation of the decision tree in FNA specimens from the lungs and lung-draining lymph nodes showed 84% concurrence in cases from the lung and 100% concurrence in cases from the lymph node. In cases where the algorithm assigned a primary site, it was 95% accurate compared to the multidisciplinary diagnosis.

CONCLUSIONS

This method holds promise in distinguishing primary versus metastatic lesions in resection, biopsy, and FNA samples from the lungs.

摘要

背景

对于病理学家而言,在经支气管活检或细针穿刺抽吸(FNA)样本中诊断肺黏液腺癌可能具有挑战性,因为原发性和转移性肿瘤在形态学、免疫组织化学和分子特征上可能相似。正确诊断是确定合适治疗方案以及区分原发性疾病和转移性疾病的关键。对于有结肠黏液腺癌病史的患者,这一区分通常由病理学家完成。尽管存在局限性,但免疫组织化学常被用于帮助确定肺黏液腺癌的原发部位。然而,这方面已发表的数据仅限于使用少数几种标志物的研究。

方法

作者研究了细胞角蛋白7(CK7)、甲状腺转录因子-1(TTF-1)、天冬氨酸蛋白酶A(NapsinA)、细胞角蛋白20(CK20)、尾型同源盒转录因子2(CDX2)和特殊AT富含序列结合蛋白2(SATB2)在具有黏液特征的肺腺癌切除标本和转移性结直肠腺癌中的染色特征及异质性。

结果

基于该队列中的异质性、敏感性和特异性,作者开发了一种基于TTF-1、SATB2、CDX2和CK7的决策树,以将肿瘤分类为原发性或转移性病变。在来自肺和肺引流淋巴结的FNA标本中对该决策树进行验证,结果显示肺部病例的一致性为84%,淋巴结病例的一致性为100%。在该算法确定原发部位的病例中,与多学科诊断相比,其准确率为95%。

结论

该方法有望区分来自肺部的切除标本、活检标本和FNA样本中的原发性与转移性病变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验