Division of Plastic Surgery, Department of Surgery, University of Pennsylvania Health System, 3400 Civic Center Boulevard, 14th floor South Tower, Philadelphia, PA, 19104, USA.
Division of Biostatistics, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
Hernia. 2024 Feb;28(1):17-24. doi: 10.1007/s10029-023-02835-7. Epub 2023 Sep 7.
Unstructured data are an untapped source for surgical prediction. Modern image analysis and machine learning (ML) can harness unstructured data in medical imaging. Incisional hernia (IH) is a pervasive surgical disease, well-suited for prediction using image analysis. Our objective was to identify optimal biomarkers (OBMs) from preoperative abdominopelvic computed tomography (CT) imaging which are most predictive of IH development.
Two hundred and twelve rigorously matched colorectal surgery patients at our institution were included. Preoperative abdominopelvic CT scans were segmented to derive linear, volumetric, intensity-based, and textural features. These features were analyzed to find a small subset of OBMs, which are maximally predictive of IH. Three ML classifiers (Ensemble Boosting, Random Forest, SVM) trained on these OBMs were used for prediction of IH.
Altogether, 279 features were extracted from each CT scan. The most predictive OBMs found were: (1) abdominopelvic visceral adipose tissue (VAT) volume, normalized for height; (2) abdominopelvic skeletal muscle tissue volume, normalized for height; and (3) pelvic VAT volume to pelvic outer aspect of body wall skeletal musculature (OAM) volume ratio. Among ML prediction models, Ensemble Boosting produced the best performance with an AUC of 0.85, accuracy of 0.83, sensitivity of 0.86, and specificity of 0.81.
These OBMs suggest increased intra-abdominopelvic volume/pressure as the salient pathophysiologic driver and likely mechanism for IH formation. ML models using these OBMs are highly predictive for IH development. The next generation of surgical prediction will maximize the utility of unstructured data using advanced image analysis and ML.
非结构化数据是外科预测的未开发资源。现代图像分析和机器学习(ML)可以利用医学成像中的非结构化数据。切口疝(IH)是一种普遍的外科疾病,非常适合使用图像分析进行预测。我们的目标是从术前腹盆部计算机断层扫描(CT)成像中确定最佳生物标志物(OBM),这些生物标志物最能预测 IH 的发生。
我们纳入了本机构 212 例严格匹配的结直肠手术患者。对术前腹盆部 CT 扫描进行分割,以获得线性、体积、基于强度和纹理特征。分析这些特征以找到一小部分 OBM,这些 OBM 对 IH 的预测性最大。使用基于这些 OBM 训练的三个 ML 分类器(集成提升、随机森林、SVM)来预测 IH。
总共从每个 CT 扫描中提取了 279 个特征。发现的最具预测性的 OBM 是:(1)腹盆部内脏脂肪组织(VAT)体积,按身高归一化;(2)腹盆部骨骼肌组织体积,按身高归一化;(3)骨盆 VAT 体积与骨盆外壁骨骼肌组织(OAM)体积之比。在 ML 预测模型中,集成提升产生了最佳性能,AUC 为 0.85,准确率为 0.83,灵敏度为 0.86,特异性为 0.81。
这些 OBM 表明,腹盆内体积/压力增加是 IH 形成的突出病理生理驱动因素和可能机制。使用这些 OBM 的 ML 模型对 IH 的发生具有高度预测性。下一代外科预测将通过使用先进的图像分析和 ML 最大限度地利用非结构化数据。