Suppr超能文献

利用黑人女孩跑步网络社区作为促进体育活动参与的支持性社区:混合方法研究。

Leveraging the Black Girls Run Web-Based Community as a Supportive Community for Physical Activity Engagement: Mixed Methods Study.

作者信息

Kalinowski Jolaade, Idiong Christie, Blackman-Carr Loneke, Cooksey Stowers Kristen, Davis Shardé, Pan Cindy, Chhabra Alisha, Eaton Lisa, Gans Kim M, Alexander Jay Ell, Pagoto Sherry

机构信息

Department of Human Development and Family Sciences, The University of Connecticut, Storrs, CT, United States.

Department of Allied Health Sciences, The University of Connecticut, Storrs, CT, United States.

出版信息

JMIR Form Res. 2023 Sep 7;7:e43825. doi: 10.2196/43825.

Abstract

BACKGROUND

About 59%-73% of Black women do not meet the recommended targets for physical activity (PA). PA is a key modifiable lifestyle factor that can help mitigate risk for chronic diseases such as obesity, diabetes, and hypertension that disproportionately affect Black women. Web-based communities focused on PA have been emerging in recent years as web-based gathering spaces to provide support for PA in specific populations. One example is Black Girls Run (BGR), which is devoted to promoting PA in Black women.

OBJECTIVE

The purpose of this study was to describe the content shared on the BGR public Facebook page to provide insight into how web-based communities engage Black women in PA and inform the development of web-based PA interventions for Black women.

METHODS

Using Facebook Crowdtangle, we collected posts (n=397) and associated engagement data from the BGR public Facebook page for the 6-month period between June 1, 2021, and December 31, 2021. We pooled data in Dedoose to analyze the qualitative data and conducted a content analysis of qualitative data. We quantified types of posts, post engagement, and compared post types on engagement: "like," "love," "haha," "wow," "care," "sad," "angry," "comments," and "shares."

RESULTS

The content analysis revealed 8 categories of posts: shout-outs to members for achievements (n=122, 31%), goals or motivational (n=65, 16%), announcements (n=63, 16%), sponsored or ads (n=54, 14%), health related (n=47, 11%), the lived Black experience (n=23, 6%), self-care (n=15, 4%), and holidays or greetings (n=8, 2%). The 397 posts attracted a total of 55,354 engagements (reactions, comments, and shares). Associations between the number of engagement and post categories were analyzed using generalized linear models. Shout-out posts (n=22,268) elicited the highest average of total user engagement of 181.7 (SD 116.7), followed by goals or motivational posts (n=11,490) with an average total engagement of 160.1 (SD 125.2) and announcements (n=7962) having an average total engagement of 129.9 (SD 170.7). Significant statistical differences were found among the total engagement of posts (χ=80.99, P<.001), "like" (χ=119.37, P<.001), "love" (χ=63.995, P<.001), "wow" (χ=23.73, P<.001), "care" (χ=35.06, P<.001), "comments" (χ=80.55, P<.001), and "shares" (χ=71.28, P<.001).

CONCLUSIONS

The majority of content on the BGR Facebook page (n=250, 63%) was focused on celebrating member achievements, motivating members to get active, and announcing and promoting active events. These types of posts attracted 75% of total post engagement. BGR appears to be a rich web-based community that offers social support for PA as well as culturally relevant health and social justice content. Web-based communities may be uniquely positioned to engage minoritized populations in health behavior. Further research should explore how and if web-based communities such as BGR can be interwoven into health interventions and health promotion.

摘要

背景

约59%-73%的黑人女性未达到推荐的身体活动(PA)目标。身体活动是一个关键的可改变生活方式因素,有助于降低肥胖、糖尿病和高血压等慢性病的风险,而这些疾病对黑人女性的影响尤为严重。近年来,专注于身体活动的网络社区不断涌现,成为特定人群进行身体活动提供支持的网络聚集空间。其中一个例子是“黑人女孩跑步”(BGR),致力于促进黑人女性的身体活动。

目的

本研究旨在描述BGR公共脸书页面上分享的内容,以深入了解网络社区如何促使黑人女性参与身体活动,并为针对黑人女性的网络身体活动干预措施的制定提供参考。

方法

我们使用脸书Crowdtangle工具,收集了2021年6月1日至2021年12月31日这6个月期间BGR公共脸书页面上的帖子(n=397)及相关互动数据。我们将数据汇总到Dedoose中进行定性数据分析,并对定性数据进行了内容分析。我们对帖子类型、帖子互动情况进行了量化,并比较了不同帖子类型的互动情况:“点赞”“喜爱”“哈哈”“哇”“关心”“悲伤”“愤怒”“评论”和“分享”。

结果

内容分析揭示了8类帖子:对成员成就的赞扬(n=122,31%)、目标或激励类(n=65,16%)、公告类(n=63,16%)、赞助或广告类(n=54,14%)、健康相关类(n=47,11%)、黑人生活经历类(n=23,6%)、自我护理类(n=15,4%)以及节日或问候类(n=8,2%)。这397篇帖子总共吸引了55354次互动(反应、评论和分享)。使用广义线性模型分析了互动数量与帖子类别之间的关联。赞扬类帖子(n=22268)引发的用户总互动平均值最高,为181.7(标准差116.7),其次是目标或激励类帖子(n=11490),平均总互动为160.1(标准差125.2),公告类帖子(n=7962)的平均总互动为129.9(标准差170.7)。在帖子的总互动(χ=80.99,P<.001)、“点赞”(χ=119.37,P<.001)、“喜爱”(χ=63.995,P<.001)、“哇”(χ=23.73,P<.001)、“关心”(χ=35.06,P<.001)、“评论”(χ=80.55,P<.001)和“分享”(χ=71.28,P<.001)方面发现了显著的统计学差异。

结论

BGR脸书页面上的大部分内容(n=250,63%)集中在庆祝成员成就、激励成员积极行动以及宣布和推广积极活动。这些类型的帖子吸引了75%的总帖子互动。BGR似乎是一个丰富的网络社区,为身体活动提供社会支持以及与文化相关的健康和社会正义内容。网络社区可能具有独特的优势,能够促使少数族裔群体参与健康行为。进一步的研究应探索像BGR这样的网络社区如何以及是否可以融入健康干预和健康促进中。

相似文献

引用本文的文献

本文引用的文献

2
A Qualitative Content Analysis of Responses to CDC's Foodborne Outbreak Messages on Facebook.
Food Prot Trends. 2022 May;42(3):174-185. doi: 10.4315/fpt-21-028.
3
How Vaccination Rumours Spread Online: Tracing the Dissemination of Information Regarding Adverse Events of COVID-19 Vaccines.
Int J Public Health. 2022 May 30;67:1604228. doi: 10.3389/ijph.2022.1604228. eCollection 2022.
4
Usage of Digital Health Tools and Perception of mHealth Intervention for Physical Activity and Sleep in Black Women.
Int J Environ Res Public Health. 2022 Jan 29;19(3):1557. doi: 10.3390/ijerph19031557.
5
Ethnic Disparities in Diabetes.
Endocrinol Metab Clin North Am. 2021 Sep;50(3):475-490. doi: 10.1016/j.ecl.2021.05.006. Epub 2021 Jul 12.
7
Pre-exposure Prophylaxis (PrEP) Information on Instagram: Content Analysis.
JMIR Public Health Surveill. 2021 Jul 27;7(7):e23876. doi: 10.2196/23876.
8
Running while Black: A distinctive safety concern and barrier to exercise in White neighborhoods.
Prev Med Rep. 2021 Apr 20;22:101378. doi: 10.1016/j.pmedr.2021.101378. eCollection 2021 Jun.
9
How did individuals on Instagram discuss COVID-19 in the month following official pandemic status? A examination of user content.
J Prev Interv Community. 2021 Apr-Jun;49(2):110-118. doi: 10.1080/10852352.2021.1908205. Epub 2021 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验