College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
Int J Biol Macromol. 2023 Dec 31;253(Pt 2):126730. doi: 10.1016/j.ijbiomac.2023.126730. Epub 2023 Sep 7.
Hydrogels are attractive materials with structures and functional properties similar to biological tissues and widely used in biomedical engineering. However, traditional synthetic hydrogels possess poor mechanical strength, and their applications are limited. Herein, a multidimensional material design method is developed; it includes the in situ gelation of silk fabric and nacre-inspired layer-by-layer assembly, which is used to prepare silk fibroin (SF) hydrogels. The in situ gelation method of silk fabric introduces a directionally ordered fabric network in a silk substrate, considerably enhancing the strength of hydrogels. Based on the nacre structure, the layer-by-layer assembly method enables silk hydrogels to break through the size limit and increase the thickness, realizing the longitudinal extension of the hydrogels. The application of the combined biomineralization and hot pressing method can effectively reduce interface defects and improve the interaction between organic and inorganic interfaces. The multidimensional material design method helps increase the strength (287.78 MPa), toughness (18.43 MJ m), and fracture energy (50.58 kJ m) of SF hydrogels; these hydrogels can weigh 2000 times their own weight. Therefore, SF hydrogels designed using the aforementioned combined method can realize the combination of strength and toughness and be used in biological tissue engineering and structural materials.
水凝胶是一种具有与生物组织相似的结构和功能特性的有吸引力的材料,广泛应用于生物医学工程中。然而,传统的合成水凝胶具有较差的机械强度,其应用受到限制。本文开发了一种多维材料设计方法;它包括丝织物的原位凝胶化和仿珍珠层状层层组装,用于制备丝素(SF)水凝胶。丝织物的原位凝胶化方法在丝质基底中引入了定向有序的织物网络,极大地提高了水凝胶的强度。基于珍珠层结构,层层组装方法使丝水凝胶突破了尺寸限制并增加了厚度,实现了水凝胶的纵向延伸。组合生物矿化和热压方法的应用可以有效地减少界面缺陷并提高有机和无机界面之间的相互作用。多维材料设计方法有助于提高 SF 水凝胶的强度(287.78 MPa)、韧性(18.43 MJ m)和断裂能(50.58 kJ m);这些水凝胶可以承受自身重量的 2000 倍。因此,使用上述组合方法设计的 SF 水凝胶可以实现强度和韧性的结合,并可用于生物组织工程和结构材料。