Suppr超能文献

具有媒体报道介导的非线性感染力的SEIR模型动力学

Dynamics of an SEIR model with media coverage mediated nonlinear infectious force.

作者信息

Xie Jingli, Guo Hongli, Zhang Meiyang

机构信息

College of Mathematics and Statistics, Jishou University, Jishou, Hunan 416000, China.

出版信息

Math Biosci Eng. 2023 Jul 5;20(8):14616-14633. doi: 10.3934/mbe.2023654.

Abstract

Media coverage can greatly impact the spread of infectious diseases. Taking into consideration the impacts of media coverage, we propose an SEIR model with a media coverage mediated nonlinear infection force. For this novel disease model, we identify the basic reproduction number using the next generation matrix method and establish the global threshold results: If the basic reproduction number $ \mathcal{R}{0} < 1 $, then the disease-free equilibrium $ P_{0} $ is stable, and the disease dies out. If $ \mathcal{R}_{0} > 1 $, then the endemic equilibrium $ P^{*} $ is stable, and the disease persists. Sensitivity analysis indicates that the basic reproduction number $ \mathcal{R}{0} $ is most sensitive to the population recruitment rate $ \Lambda $ and the disease transmission rate $ \beta _{1} $.

摘要

媒体报道会对传染病的传播产生重大影响。考虑到媒体报道的影响,我们提出了一个具有媒体报道介导的非线性感染力的SEIR模型。对于这个新型疾病模型,我们使用下一代矩阵方法确定基本再生数,并建立全局阈值结果:如果基本再生数$\mathcal{R}{0}<1$,那么无病平衡点$P_{0}$是稳定的,疾病会消亡。如果$\mathcal{R}_{0}>1$,那么地方病平衡点$P^{*}$是稳定的,疾病会持续存在。敏感性分析表明,基本再生数$\mathcal{R}{0}$对种群补充率$\Lambda$和疾病传播率$\beta _{1}$最为敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验