Xie Jingli, Guo Hongli, Zhang Meiyang
College of Mathematics and Statistics, Jishou University, Jishou, Hunan 416000, China.
Math Biosci Eng. 2023 Jul 5;20(8):14616-14633. doi: 10.3934/mbe.2023654.
Media coverage can greatly impact the spread of infectious diseases. Taking into consideration the impacts of media coverage, we propose an SEIR model with a media coverage mediated nonlinear infection force. For this novel disease model, we identify the basic reproduction number using the next generation matrix method and establish the global threshold results: If the basic reproduction number $ \mathcal{R}{0} < 1 $, then the disease-free equilibrium $ P_{0} $ is stable, and the disease dies out. If $ \mathcal{R}_{0} > 1 $, then the endemic equilibrium $ P^{*} $ is stable, and the disease persists. Sensitivity analysis indicates that the basic reproduction number $ \mathcal{R}{0} $ is most sensitive to the population recruitment rate $ \Lambda $ and the disease transmission rate $ \beta _{1} $.
媒体报道会对传染病的传播产生重大影响。考虑到媒体报道的影响,我们提出了一个具有媒体报道介导的非线性感染力的SEIR模型。对于这个新型疾病模型,我们使用下一代矩阵方法确定基本再生数,并建立全局阈值结果:如果基本再生数$\mathcal{R}{0}<1$,那么无病平衡点$P_{0}$是稳定的,疾病会消亡。如果$\mathcal{R}_{0}>1$,那么地方病平衡点$P^{*}$是稳定的,疾病会持续存在。敏感性分析表明,基本再生数$\mathcal{R}{0}$对种群补充率$\Lambda$和疾病传播率$\beta _{1}$最为敏感。