School of Mathematics and Statistics, Weinan Normal University, Weinan, Shaanxi 714000, China.
Comput Intell Neurosci. 2022 Aug 8;2022:8215214. doi: 10.1155/2022/8215214. eCollection 2022.
In the current study, a generalized SEIR epidemic model is studied. The generalized fractional-order SEIR model (susceptible-infected-recovered (SIR) epidemic) model differentiated the population into susceptible population, exposure population, infected population, and rehabilitation population and has fundamental mentoring importance for the forecast of the probable outburst of infectious ailments. The fundamental duplicated quantity is inferred. When < 1, the disease-free equilibrium (DFE) is particular and tending towards stability. When > 1, the endemic equilibrium is sole. In addition, certain circumstances are set up to make sure the local progressive stability of disease-free and endemic equilibrium. Considering the influence of the individual behavior, a broader SEIR epidemic model is raised, which classified the population into susceptible, exposure, infected, and rehabilitation. What is more, the basic reproduction number, that regulates whether the infection will die out or not, is obtained by the spectral radius of the next-generation matrix; moreover, the global stability of DFE and endemic equilibrium are analyzed by a geometry method.
在目前的研究中,研究了一个广义 SEIR 传染病模型。广义分数阶 SEIR 模型(易感-感染-恢复(SIR)传染病)模型将人群分为易感人群、暴露人群、感染人群和康复人群,对传染病可能爆发的预测具有重要的指导意义。推断出基本的重复数量 。当 < 1 时,无病平衡点(DFE)是特定的且趋于稳定。当 > 1 时,地方病平衡点是唯一的。此外,还设置了某些情况来确保无病和地方病平衡点的局部渐进稳定性。考虑到个体行为的影响,提出了一个更广泛的 SEIR 传染病模型,该模型将人群分为易感、暴露、感染和康复。更重要的是,通过下一代矩阵的谱半径得到了基本繁殖数,它调节了感染是否会消亡;此外,通过几何方法分析了 DFE 和地方病平衡点的全局稳定性。