Suppr超能文献

基于差分进化自适应精英蝴蝶优化算法的土壤湿度无线传感器网络可靠任务分配

Reliable task allocation for soil moisture wireless sensor networks using differential evolution adaptive elite butterfly optimization algorithm.

作者信息

Huang Haitao, Tian Min, Zhou Jie, Liu Xiang

机构信息

College of mechanical and electrical engineering, Shihezi University, Shihezi 832000, China.

College of information science and technology, Shihezi University, Shihezi 832000, China.

出版信息

Math Biosci Eng. 2023 Jul 6;20(8):14675-14698. doi: 10.3934/mbe.2023656.

Abstract

Wireless sensor technology advancements have made soil moisture wireless sensor networks (SMWSNs) a vital component of precision agriculture. However, the humidity nodes in SMWSNs have a weak ability in information collection, storage, calculation, etc. Hence, it is essential to reasonably pursue task allocation for SMWSNs to improve the network benefits of SMWSNs. However, the task allocation of SMWSNs is an NP (Non-deterministic Polynomial)-hard issue, and its complexity becomes even higher when constraints such as limited computing capabilities and power are taken into consideration. In this paper, a novel differential evolution adaptive elite butterfly optimization algorithm (DEAEBOA) is proposed. DEAEBOA has significantly improved the task allocation efficiency of SMWSNs, effectively avoided plan stagnation, and greatly accelerated the convergence speed. In the meantime, a new adaptive operator was designed, which signally ameliorates the accuracy and performance of the algorithm. In addition, a new elite operator and differential evolution strategy are put forward to markedly enhance the global search ability, which can availably avoid local optimization. Simulation experiments were carried out by comparing DEAEBOA with the butterfly optimization algorithm (BOA), particle swarm optimization (PSO), genetic algorithm (GA), and beluga whale optimization (BWO). The simulation results show that DEAEBOA significantly improved the task allocation efficiency, and compared with BOA, PSO, GA, and BWO the network benefit rate increased by 11.86%, 5.46%, 8.98%, and 12.18% respectively.

摘要

无线传感器技术的进步使土壤湿度无线传感器网络(SMWSNs)成为精准农业的重要组成部分。然而,SMWSNs中的湿度节点在信息收集、存储、计算等方面能力较弱。因此,合理地进行SMWSNs的任务分配以提高其网络效益至关重要。然而,SMWSNs的任务分配是一个NP(非确定性多项式)难题,当考虑诸如计算能力和功率受限等约束条件时,其复杂性会变得更高。本文提出了一种新颖的差分进化自适应精英蝴蝶优化算法(DEAEBOA)。DEAEBOA显著提高了SMWSNs的任务分配效率,有效避免了方案停滞,并大大加快了收敛速度。同时,设计了一种新的自适应算子,显著改善了算法的准确性和性能。此外,还提出了一种新的精英算子和差分进化策略,以显著增强全局搜索能力,从而有效避免局部优化。通过将DEAEBOA与蝴蝶优化算法(BOA)、粒子群优化算法(PSO)、遗传算法(GA)和白鲸优化算法(BWO)进行比较,开展了仿真实验。仿真结果表明,DEAEBOA显著提高了任务分配效率,与BOA、PSO、GA和BWO相比,网络效益率分别提高了11.86%、5.46%、8.98%和12.18%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验