College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832000, China.
College of Information Science and Technology, Shihezi University, Shihezi, 832000, China.
Sci Rep. 2022 Jul 8;12(1):11687. doi: 10.1038/s41598-022-15689-3.
Soil moisture wireless sensor networks (SMWSNs) are used in the field of information monitoring for precision farm irrigation, which monitors the soil moisture content and changes during crop growth and development through sensor nodes at the end. The control terminal adjusts the irrigation water volume according to the transmitted information, which is significant for increasing the crop yield. One of the main challenges of SMWSNs in practical applications is to maximize the coverage area under certain conditions of monitoring area and to minimize the number of nodes used. Therefore, a new adaptive Cauchy variant butterfly optimization algorithm (ACBOA) has been designed to effectively improve the network coverage. More importantly, new Cauchy variants and adaptive factors for improving the global and local search ability of ACBOA, respectively, are designed. In addition, a new coverage optimization model for SMWSNs that integrates node coverage and network quality of service is developed. Subsequently, the proposed algorithm is compared with other swarm intelligence algorithms, namely, butterfly optimization algorithm (BOA), artificial bee colony algorithm (ABC), fruit fly optimization algorithm (FOA), and particle swarm optimization algorithm (PSO), under the conditions of a certain initial population size and number of iterations for the fairness and objectivity of simulation experiments. The simulation results show that the coverage rate of SMWSNs after ACBOA optimization increases by 9.09%, 13.78%, 2.57%, and 11.11% over BOA, ABC, FOA, and PSO optimization, respectively.
土壤湿度无线传感器网络(SMWSNs)用于精准农业灌溉的信息监测领域,通过末端的传感器节点监测作物生长发育过程中的土壤湿度含量及其变化。控制终端根据传输信息调整灌溉水量,这对于提高作物产量具有重要意义。SMWSNs 在实际应用中的主要挑战之一是在监测区域的某些条件下最大化覆盖区域,同时最小化使用的节点数量。因此,设计了一种新的自适应柯西变体蝴蝶优化算法(ACBOA),以有效地提高网络的覆盖率。更重要的是,分别为提高 ACBOA 的全局和局部搜索能力设计了新的柯西变体和自适应因子。此外,开发了一种新的 SMWSNs 覆盖优化模型,该模型集成了节点覆盖和网络服务质量。随后,在一定的初始种群大小和迭代次数的条件下,将所提出的算法与其他群智能算法(即蝴蝶优化算法(BOA)、人工蜂群算法(ABC)、果蝇优化算法(FOA)和粒子群优化算法(PSO))进行了比较,以确保模拟实验的公平性和客观性。仿真结果表明,与 BOA、ABC、FOA 和 PSO 优化相比,ACBOA 优化后的 SMWSNs 的覆盖率分别提高了 9.09%、13.78%、2.57%和 11.11%。