Suppr超能文献

用于脉冲Cohen-Grossberg型一致神经网络模型的流形稳定性的李雅普诺夫方法。

Lyapunov approach to manifolds stability for impulsive Cohen-Grossberg-type conformable neural network models.

作者信息

Stamov Trayan, Stamov Gani, Stamova Ivanka, Gospodinova Ekaterina

机构信息

Department of Engineering Design, Technical University of Sofia, Sofia 1000, Bulgaria.

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio TX 78249, USA.

出版信息

Math Biosci Eng. 2023 Jul 24;20(8):15431-15455. doi: 10.3934/mbe.2023689.

Abstract

In this paper, motivated by the advantages of the generalized conformable derivatives, an impulsive conformable Cohen-Grossberg-type neural network model is introduced. The impulses, which can be also considered as a control strategy, are at fixed instants of time. We define the notion of practical stability with respect to manifolds. A Lyapunov-based analysis is conducted, and new criteria are proposed. The case of bidirectional associative memory (BAM) network model is also investigated. Examples are given to demonstrate the effectiveness of the established results.

摘要

在本文中,受广义一致导数优点的启发,引入了一个脉冲一致型Cohen-Grossberg神经网络模型。这些脉冲也可被视为一种控制策略,作用于固定的时刻。我们定义了关于流形的实际稳定性概念。进行了基于李雅普诺夫的分析,并提出了新的准则。还研究了双向联想记忆(BAM)网络模型的情况。给出了例子以证明所建立结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验