Suppr超能文献

一类新型脉冲类分数阶神经网络的设计与实际稳定性

Design and Practical Stability of a New Class of Impulsive Fractional-Like Neural Networks.

作者信息

Stamov Gani, Stamova Ivanka, Martynyuk Anatoliy, Stamov Trayan

机构信息

Department of Mathematics, Technical University of Sofia, 8800 Sliven, Bulgaria.

Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

Entropy (Basel). 2020 Mar 15;22(3):337. doi: 10.3390/e22030337.

Abstract

In this paper, a new class of impulsive neural networks with fractional-like derivatives is defined, and the practical stability properties of the solutions are investigated. The stability analysis exploits a new type of Lyapunov-like functions and their derivatives. Furthermore, the obtained results are applied to a bidirectional associative memory (BAM) neural network model with fractional-like derivatives. Some new results for the introduced neural network models with uncertain values of the parameters are also obtained.

摘要

本文定义了一类新型的具有类分数阶导数的脉冲神经网络,并研究了解的实际稳定性。稳定性分析利用了一种新型的类李雅普诺夫函数及其导数。此外,所得结果应用于具有类分数阶导数的双向联想记忆(BAM)神经网络模型。还获得了关于所引入的参数值不确定的神经网络模型的一些新结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/394e/7516808/d1d8f53cd335/entropy-22-00337-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验