Sisombat Félix, Devaux Thibaut, Haumesser Lionel, Callé Samuel
GREMAN UMR 7347, Université de Tours, INSA CVL, CNRS, 41000, Blois, France.
Sci Rep. 2023 Sep 7;13(1):14703. doi: 10.1038/s41598-023-39464-0.
Reversible and programmable shaping of surfaces promises wide-ranging applications in tunable optics and acoustic metasurfaces. Based on acoustic radiation pressure, contactless and real-time deformation of fluid interface can be achieved. This paper presents an experimental and numerical study to characterize the spatiotemporal properties of the deformation induced by acoustic radiation pressure. Using localized ultrasonic excitation, we report the possibility of on-demand tailoring of the induced protrusion at water-air interface in space and time, depending on the shape of the input pressure field. The experimental method used to measure the deformation of the water surface in space and time shows close agreement with simulations. We demonstrate that acoustic radiation pressure allows shaping protrusion at fluid interfaces, which could be changed into a various set of spatiotemporal distributions, considering simple parameters of the ultrasonic excitation. This paves the way for novel approach to design programmable space and time-dependent gratings at fluid interfaces.
表面的可逆和可编程成形在可调谐光学和声超表面中具有广泛的应用前景。基于声辐射压力,可以实现流体界面的非接触式实时变形。本文进行了一项实验和数值研究,以表征声辐射压力引起的变形的时空特性。利用局部超声激发,我们报告了根据输入压力场的形状,在空间和时间上按需定制水 - 空气界面处诱导凸起的可能性。用于测量水面在空间和时间上变形的实验方法与模拟结果显示出密切的一致性。我们证明,考虑到超声激发的简单参数,声辐射压力能够使流体界面处的凸起成形,并且可以将其改变为各种时空分布。这为在流体界面设计可编程的时空相关光栅开辟了新途径。