Suppr超能文献

基于多序列 MRI 最佳感兴趣区的影像组学列线图预测肝内胆管细胞癌微血管侵犯。

Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma.

机构信息

Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China.

Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.

出版信息

Radiol Med. 2023 Nov;128(11):1296-1309. doi: 10.1007/s11547-023-01704-8. Epub 2023 Sep 7.

Abstract

OBJECTIVE

Microvascular invasion (MVI) is a significant adverse prognostic indicator of intrahepatic cholangiocarcinoma (ICC) and affects the selection of individualized treatment regimens. This study sought to establish a radiomics nomogram based on the optimal VOI of multi-sequence MRI for predicting MVI in ICC tumors.

METHODS

160 single ICC lesions with MRI scanning confirmed by postoperative pathology were randomly separated into training and validation cohorts (TC and VC). Multivariate analysis identified independent clinical and imaging MVI predictors. Radiomics features were obtained from images of 6 MRI sequences at 4 different VOIs. The least absolute shrinkage and selection operator algorithm was performed to enable the derivation of robust and effective radiomics features. Then, the best three sequences and the optimal VOI were obtained through comparison. The MVI prediction nomogram combined the independent predictors and optimal radiomics features, and its performance was evaluated via the receiver operating characteristics, calibration, and decision curves.

RESULTS

Tumor size and intrahepatic ductal dilatation are independent MVI predictors. Radiomics features extracted from the best three sequences (T1WI-D, T1WI, DWI) with VOI (including tumor and 10 mm peritumoral region) showed the best predictive performance, with AUC = 0.987 and AUC = 0.859. The MVI prediction nomogram obtained excellent prediction efficacy in both TC (AUC = 0.995, 95%CI 0.987-1.000) and VC (AUC = 0.867, 95%CI 0.798-0.921) and its clinical significance was further confirmed by the decision curves.

CONCLUSION

A nomogram combining tumor size, intrahepatic ductal dilatation, and the radiomics model of MRI multi-sequence fusion at VOI may be a predictor of preoperative MVI status in ICC patients.

摘要

目的

微血管侵犯(MVI)是肝内胆管癌(ICC)的一个重要不良预后指标,影响个体化治疗方案的选择。本研究旨在建立一种基于多序列 MRI 最佳感兴趣区(VOI)的放射组学列线图,用于预测 ICC 肿瘤的 MVI。

方法

160 个经术后病理证实的 MRI 扫描 ICC 单病灶随机分为训练集(TC)和验证集(VC)。多变量分析确定独立的临床和影像学 MVI 预测因素。从 6 个 MRI 序列的 4 个不同 VOI 图像中提取放射组学特征。采用最小绝对收缩和选择算子算法得出稳健有效的放射组学特征。然后通过比较得出最佳的三个序列和最佳 VOI。MVI 预测列线图结合独立预测因素和最佳放射组学特征,通过接受者操作特征曲线、校准曲线和决策曲线进行评估。

结果

肿瘤大小和肝内胆管扩张是独立的 MVI 预测因素。从最佳三个序列(T1WI-D、T1WI、DWI)的 VOI(包括肿瘤和 10mm 肿瘤旁区域)中提取的放射组学特征具有最佳的预测性能,AUC 值分别为 0.987 和 0.859。在 TC(AUC=0.995,95%CI 0.987-1.000)和 VC(AUC=0.867,95%CI 0.798-0.921)中,MVI 预测列线图均获得了优异的预测效果,且决策曲线进一步证实了其临床意义。

结论

一种结合肿瘤大小、肝内胆管扩张和 MRI 多序列融合 VOI 放射组学模型的列线图可能是预测 ICC 患者术前 MVI 状态的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3020/10620280/1501b1066161/11547_2023_1704_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验