Suppr超能文献

基于MRI的肿块型肝内胆管癌微血管侵犯预测:生存及治疗获益情况

MRI-based microvascular invasion prediction in mass-forming intrahepatic cholangiocarcinoma: survival and therapeutic benefit.

作者信息

Sheng Ruofan, Zheng Beixuan, Zhang Yunfei, Sun Wei, Yang Chun, Han Jing, Zeng Mengsu, Zhou Jianjun

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.

Shanghai Institute of Medical Imaging, Shanghai, China.

出版信息

Eur Radiol. 2024 Dec 19. doi: 10.1007/s00330-024-11296-0.

Abstract

OBJECTIVES

To establish an MRI-based model for microvascular invasion (MVI) prediction in mass-forming intrahepatic cholangiocarcinoma (MF-iCCA) and further evaluate its potential survival and therapeutic benefit.

METHODS

One hundred and fifty-six pathologically confirmed MF-iCCAs with traditional surgery (121 in training and 35 in validation cohorts), 33 with neoadjuvant treatment and 57 with first-line systemic therapy were retrospectively included. Univariate and multivariate regression analyses were performed to identify the independent predictors for MVI in the traditional surgery group, and an MVI-predictive model was constructed. Survival analyses were conducted and compared between MRI-predicted MVI-positive and MVI-negative MF-iCCAs in different treatment groups.

RESULTS

Tumor multinodularity (odds ratio = 4.498, p < 0.001) and peri-tumor diffusion-weighted hyperintensity (odds ratio = 4.163, p < 0.001) were independently significant variables associated with MVI. AUC values for the predictive model were 0.760 [95% CI 0.674, 0.833] in the training cohort and 0.757 [95% CI 0.583, 0.885] in the validation cohort. Recurrence-free survival or progression-free survival of the MRI-predicted MVI-positive patients was significantly shorter than the MVI-negative patients in all three treatment groups (log-rank p < 0.001 to 0.046). The use of neoadjuvant therapy was not associated with improved postoperative recurrence-free survival for high-risk MF-iCCA patients in both MRI-predicted MVI-positive and MVI-negative groups (log-rank p = 0.79 and 0.27). Advanced MF-iCCA patients of the MRI-predicted MVI-positive group had significantly worse objective response rate than the MVI-negative group with systemic therapy (40.91% vs 76.92%, χ = 5.208, p = 0.022).

CONCLUSION

The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction in MF-iCCA patients with varied therapies and may aid in candidate selection for systemic therapy.

KEY POINTS

Question Identifying intrahepatic cholangiocarcinoma (iCCA) patients at high risk for microvascular invasion (MVI) may inform prognostic risk stratification and guide clinical treatment decision. Findings We established an MRI-based predictive model for MVI in mass-forming-iCCA, integrating imaging features of tumor multinodularity and peri-tumor diffusion-weighted hyperintensity. Clinical relevance The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction across varied therapies and may aid in therapeutic candidate selection for systemic therapy.

摘要

目的

建立基于磁共振成像(MRI)的肿块型肝内胆管癌(MF-iCCA)微血管侵犯(MVI)预测模型,并进一步评估其对生存及治疗获益的潜在价值。

方法

回顾性纳入156例经病理证实的接受传统手术的MF-iCCA患者(训练队列121例,验证队列35例)、33例接受新辅助治疗的患者以及57例接受一线全身治疗的患者。进行单因素和多因素回归分析以确定传统手术组中MVI的独立预测因素,并构建MVI预测模型。对不同治疗组中MRI预测为MVI阳性和MVI阴性的MF-iCCA患者进行生存分析并比较。

结果

肿瘤多结节性(优势比=4.498,p<0.001)和肿瘤周围扩散加权高信号(优势比=4.163,p<0.001)是与MVI独立相关的显著变量。预测模型在训练队列中的曲线下面积(AUC)值为0.760[95%置信区间(CI)0.674,0.833],在验证队列中为0.757[95%CI 0.583,0.885]。在所有三个治疗组中,MRI预测为MVI阳性的患者的无复发生存期或无进展生存期均显著短于MVI阴性的患者(对数秩检验p<0.001至0.046)。在MRI预测为MVI阳性和MVI阴性的两组高危MF-iCCA患者中,新辅助治疗的使用与术后无复发生存期的改善无关(对数秩检验p=0.79和0.27)。MRI预测为MVI阳性组的晚期MF-iCCA患者接受全身治疗时的客观缓解率显著低于MVI阴性组(40.91%对76.92%,χ=5.208,p=0.022)。

结论

基于MRI的MVI预测模型可能是MF-iCCA患者个体化风险分层和生存预测的潜在生物标志物,这些患者接受了不同的治疗,该模型可能有助于全身治疗候选者的选择。

关键点

问题识别微血管侵犯(MVI)高危的肝内胆管癌(iCCA)患者可能有助于预后风险分层并指导临床治疗决策。发现我们建立了基于MRI的肿块型iCCA中MVI的预测模型,整合了肿瘤多结节性和肿瘤周围扩散加权高信号的影像特征。临床意义基于MRI的MVI预测模型可能是不同治疗方式下个体化风险分层和生存预测的潜在生物标志物,可能有助于全身治疗候选者的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验