Zhang Lulu, He Jingxuan, Li Na, Yuan Jie, Li Wenjuan, Liu Ping, Yan Tingjiang
Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43790-43798. doi: 10.1021/acsami.3c09073. Epub 2023 Sep 7.
Turning the carrier dynamics in heterojunction photocatalysts is a direct and effective strategy for improving the solar energy conversion efficiency of photocatalysts. Herein, we report a ternary CdS@MoS-CoO multiheterojunction photocatalyst consisting of the p-n junction of MoS-CoO and the type-I junction of CdS@MoS, wherein MoS located at the frontier between CdS and CoO acts as an intermediate bridge. The type-I junction allows the directional transfer of photoinduced charge from CdS to MoS, suppressing the photocorrosion of CdS. Notably, the single-particle photoluminescence technique demonstrates the sequential one-direction hole transfer from MoS to CoO aroused by the p-n junction, resulting in a long-lifetime charge separation in the carrier lifetime (54-58 ns). Compared to the bare CdS and type-I CdS@MoS, the CdS@MoS-CoO photocatalyst affords a 347-fold and 3.5-fold enhancement of the H evolution rate, a quantum efficiency of 28.6% at 450 nm, and a 20 h of long-term stability. This work provides a new understanding of the rational regulation of the charge-transfer mechanism of type-I systems by constructing multiheterojunction photocatalysts.
调控异质结光催化剂中的载流子动力学是提高光催化剂太阳能转换效率的一种直接有效的策略。在此,我们报道了一种三元CdS@MoS-CoO多异质结光催化剂,它由MoS-CoO的p-n结和CdS@MoS的I型结组成,其中位于CdS和CoO边界的MoS充当中间桥梁。I型结使光生电荷从CdS定向转移到MoS,抑制了CdS的光腐蚀。值得注意的是,单粒子光致发光技术表明,由p-n结引起的空穴从MoS到CoO的顺序单向转移,导致载流子寿命中长寿命的电荷分离(54-58 ns)。与裸CdS和I型CdS@MoS相比,CdS@MoS-CoO光催化剂的析氢速率提高了347倍和3.5倍,在450 nm处的量子效率为28.6%,并具有20小时的长期稳定性。这项工作为通过构建多异质结光催化剂合理调控I型系统的电荷转移机制提供了新的认识。