Rothfuss Arianna R M, Ayala Jaime R, Handy Joseph V, McGranahan Caitlin R, García-Pedraza Karoline E, Banerjee Sarbajit, Watson David F
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States.
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States.
ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39966-39979. doi: 10.1021/acsami.3c06722. Epub 2023 Aug 10.
We used linker-assisted assembly (LAA) to tether CdS quantum dots (QDs) to MoS nanosheets via -cysteine () or mercaptoalkanoic acids (MAAs) of varying lengths, yielding ligand-bridged CdS/MoS heterostructures for redox photocatalysis. LAA afforded precise control over the light-harvesting properties of QDs within heterostructures. Photoexcited CdS QDs transferred electrons to molecularly linked MoS nanosheets from both band-edge and trap states; the electron-transfer dynamics was tunable with the properties of bridging ligands. Rate constants of electron transfer, estimated from time-correlated single photon counting (TCSPC) measurements, ranged from (9.8 ± 3.8) × 10 s for the extraction of electrons from trap states within heterostructures incorporating the longest MAAs to >5 × 10 s for the extraction of electrons from band-edge or trap states in heterostructures with or 3-mercaptopropionic acid (3MPA) linkers. Ultrafast transient absorption measurements revealed that electrons were transferred within 0.5-2 ps or less for CdS--MoS and CdS-3MPA-MoS heterostructures, corresponding to rate constants ≥5 × 10 s. Photoinduced CdS-to-MoS electron transfer could be exploited in photocatalytic hydrogen evolution reaction (HER) via the reduction of H to H in concert with the oxidation of lactic acid. CdS--MoS-functionalized FTO electrodes promoted HER under oxidative conditions wherein H was evolved at a Pt counter electrode with Faradaic efficiencies of 90% or higher and under reductive conditions wherein H was evolved at the CdS--MoS-heterostructure-functionalized working electrode with Faradaic efficiencies of 25-40%. Dispersed CdS--MoS heterostructures promoted photocatalytic HER (15.1 μmol h) under white-light illumination, whereas free -capped CdS QDs produced threefold less H and unfunctionalized MoS nanosheets produced no measurable H. Charge separation across the CdS/MoS interface is thus pivotal for redox photocatalysis. Our results reveal that LAA affords tunability of the properties of constituent CdS QDs and MoS nanosheets and precise, programmable, ligand-dependent control over the assembly, interfacial structure, charge-transfer dynamics, and photocatalytic reactivity of CdS--MoS heterostructures.
我们使用连接体辅助组装(LAA)通过半胱氨酸()或不同长度的巯基链烷酸(MAA)将硫化镉量子点(QD)连接到二硫化钼纳米片上,从而得到用于氧化还原光催化的配体桥连硫化镉/二硫化钼异质结构。LAA能够精确控制异质结构中量子点的光捕获特性。光激发的硫化镉量子点从带边态和陷阱态将电子转移到分子连接的二硫化钼纳米片上;电子转移动力学可通过桥连配体的性质进行调节。通过时间相关单光子计数(TCSPC)测量估算的电子转移速率常数范围为:对于包含最长MAA的异质结构中从陷阱态提取电子,速率常数为(9.8 ± 3.8) × 10 s;对于具有或3-巯基丙酸(3MPA)连接体的异质结构中从带边态或陷阱态提取电子,速率常数>5 × 10 s。超快瞬态吸收测量表明,对于硫化镉-二硫化钼和硫化镉-3MPA-二硫化钼异质结构,电子在0.5 - 2 ps或更短时间内转移,对应速率常数≥5 × 10 s。光诱导的硫化镉到二硫化钼的电子转移可用于光催化析氢反应(HER),即通过将H还原为H并协同乳酸氧化来实现。硫化镉-二硫化钼功能化的FTO电极在氧化条件下促进HER,其中在铂对电极上析出H,法拉第效率为90%或更高;在还原条件下,在硫化镉-二硫化钼异质结构功能化的工作电极上析出H,法拉第效率为25 - 40%。分散的硫化镉-二硫化钼异质结构在白光照射下促进光催化HER(15.1 μmol h),而游离封端的硫化镉量子点产生的H量少三倍,未功能化的二硫化钼纳米片则没有可测量的H产生。因此,硫化镉/二硫化钼界面处的电荷分离对于氧化还原光催化至关重要。我们的结果表明,LAA能够调节组成成分硫化镉量子点和二硫化钼纳米片的性质,并对硫化镉-二硫化钼异质结构的组装、界面结构、电荷转移动力学和光催化反应活性进行精确、可编程、依赖配体的控制。