Okuno Yusuke, Clore G Marius
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.
J Phys Chem B. 2023 Sep 21;127(37):7887-7898. doi: 10.1021/acs.jpcb.3c05301. Epub 2023 Sep 8.
Longitudinal (Γ) and transverse (Γ) solvent paramagnetic relaxation enhancement (sPRE) yields field-dependent information in the form of spectral densities that provides unique information related to cosolute-protein interactions and electrostatics. A typical protein sPRE data set can only sample a few points on the spectral density curve, (ω), within a narrow frequency window (500 MHz to ∼1 GHz). However, complex interactions and dynamics of paramagnetic cosolutes around a protein make it difficult to directly interpret the few experimentally accessible points of (ω). In this paper, we show that it is possible to significantly extend the experimentally accessible frequency range (corresponding to a range from ∼270 MHz to 1.8 GHz) by acquiring a series of sPRE experiments at different temperatures. This approach is based on the scaling property of (ω) originally proposed by Melchior and Fries for small molecules. Here, we demonstrate that the same scaling property also holds for geometrically far more complex systems such as proteins. Using the extended spectral densities derived from the scaling property as the reference dataset, we demonstrate that our previous approach that makes use of a non-Lorentzian Ansatz spectral density function to fit only (0) and one to two (ω) points allows one to obtain accurate values for the concentration-normalized equilibrium average of the electron-proton interspin separation ⟨⟩ and the correlation time τ, which provide quantitative information on the energetics and timescale, respectively, of local cosolute-protein interactions. We also show that effective near-surface potentials, ϕ, obtained from ⟨⟩ provide a reliable and quantitative measure of intermolecular interactions including electrostatics, while ϕ values obtained from only Γ or Γ sPRE rates can have significant artifacts as a consequence of potential variations and changes in the diffusive properties of the cosolute around the protein surface. Finally, we discuss the experimental feasibility and limitations of extracting the high-frequency limit of (ω) that is related to ⟨⟩ and report on the extremely local intermolecular potential.
纵向(Γ)和横向(Γ)溶剂顺磁弛豫增强(sPRE)以光谱密度的形式产生与场相关的信息,该光谱密度提供了与共溶质 - 蛋白质相互作用和静电学相关的独特信息。典型的蛋白质sPRE数据集只能在狭窄的频率窗口(500 MHz至约1 GHz)内对光谱密度曲线(ω)上的几个点进行采样。然而,蛋白质周围顺磁共溶质的复杂相互作用和动力学使得难以直接解释(ω)的少数几个实验可及点。在本文中,我们表明通过在不同温度下进行一系列sPRE实验,可以显著扩展实验可及频率范围(对应于约270 MHz至1.8 GHz的范围)。这种方法基于Melchior和Fries最初为小分子提出的(ω)的标度性质。在这里,我们证明相同的标度性质也适用于几何结构复杂得多的系统,如蛋白质。使用从标度性质导出的扩展光谱密度作为参考数据集,我们证明我们之前使用非洛伦兹近似光谱密度函数仅拟合(0)以及一到两个(ω)点的方法,能够获得电子 - 质子自旋间分离的浓度归一化平衡平均值〈〉和相关时间τ的准确值,它们分别提供了关于局部共溶质 - 蛋白质相互作用的能量学和时间尺度的定量信息。我们还表明,从〈〉获得的有效近表面势ϕ提供了包括静电学在内的分子间相互作用的可靠定量测量,而仅从Γ或Γ sPRE速率获得的ϕ值可能由于蛋白质表面周围共溶质的潜在变化和扩散性质的改变而产生显著伪像。最后,我们讨论了提取与〈〉相关的(ω)的高频极限的实验可行性和局限性,并报告了极其局部的分子间势。