Suppr超能文献

通过温度依赖性溶剂顺磁弛豫增强测量扩展蛋白质-共溶质相互作用自旋偶极-偶极光谱密度的实验可及范围

Extending the Experimentally Accessible Range of Spin Dipole-Dipole Spectral Densities for Protein-Cosolute Interactions by Temperature-Dependent Solvent Paramagnetic Relaxation Enhancement Measurements.

作者信息

Okuno Yusuke, Clore G Marius

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.

出版信息

J Phys Chem B. 2023 Sep 21;127(37):7887-7898. doi: 10.1021/acs.jpcb.3c05301. Epub 2023 Sep 8.

Abstract

Longitudinal (Γ) and transverse (Γ) solvent paramagnetic relaxation enhancement (sPRE) yields field-dependent information in the form of spectral densities that provides unique information related to cosolute-protein interactions and electrostatics. A typical protein sPRE data set can only sample a few points on the spectral density curve, (ω), within a narrow frequency window (500 MHz to ∼1 GHz). However, complex interactions and dynamics of paramagnetic cosolutes around a protein make it difficult to directly interpret the few experimentally accessible points of (ω). In this paper, we show that it is possible to significantly extend the experimentally accessible frequency range (corresponding to a range from ∼270 MHz to 1.8 GHz) by acquiring a series of sPRE experiments at different temperatures. This approach is based on the scaling property of (ω) originally proposed by Melchior and Fries for small molecules. Here, we demonstrate that the same scaling property also holds for geometrically far more complex systems such as proteins. Using the extended spectral densities derived from the scaling property as the reference dataset, we demonstrate that our previous approach that makes use of a non-Lorentzian Ansatz spectral density function to fit only (0) and one to two (ω) points allows one to obtain accurate values for the concentration-normalized equilibrium average of the electron-proton interspin separation ⟨⟩ and the correlation time τ, which provide quantitative information on the energetics and timescale, respectively, of local cosolute-protein interactions. We also show that effective near-surface potentials, ϕ, obtained from ⟨⟩ provide a reliable and quantitative measure of intermolecular interactions including electrostatics, while ϕ values obtained from only Γ or Γ sPRE rates can have significant artifacts as a consequence of potential variations and changes in the diffusive properties of the cosolute around the protein surface. Finally, we discuss the experimental feasibility and limitations of extracting the high-frequency limit of (ω) that is related to ⟨⟩ and report on the extremely local intermolecular potential.

摘要

纵向(Γ)和横向(Γ)溶剂顺磁弛豫增强(sPRE)以光谱密度的形式产生与场相关的信息,该光谱密度提供了与共溶质 - 蛋白质相互作用和静电学相关的独特信息。典型的蛋白质sPRE数据集只能在狭窄的频率窗口(500 MHz至约1 GHz)内对光谱密度曲线(ω)上的几个点进行采样。然而,蛋白质周围顺磁共溶质的复杂相互作用和动力学使得难以直接解释(ω)的少数几个实验可及点。在本文中,我们表明通过在不同温度下进行一系列sPRE实验,可以显著扩展实验可及频率范围(对应于约270 MHz至1.8 GHz的范围)。这种方法基于Melchior和Fries最初为小分子提出的(ω)的标度性质。在这里,我们证明相同的标度性质也适用于几何结构复杂得多的系统,如蛋白质。使用从标度性质导出的扩展光谱密度作为参考数据集,我们证明我们之前使用非洛伦兹近似光谱密度函数仅拟合(0)以及一到两个(ω)点的方法,能够获得电子 - 质子自旋间分离的浓度归一化平衡平均值〈〉和相关时间τ的准确值,它们分别提供了关于局部共溶质 - 蛋白质相互作用的能量学和时间尺度的定量信息。我们还表明,从〈〉获得的有效近表面势ϕ提供了包括静电学在内的分子间相互作用的可靠定量测量,而仅从Γ或Γ sPRE速率获得的ϕ值可能由于蛋白质表面周围共溶质的潜在变化和扩散性质的改变而产生显著伪像。最后,我们讨论了提取与〈〉相关的(ω)的高频极限的实验可行性和局限性,并报告了极其局部的分子间势。

相似文献

3
Quantitative Interpretation of Solvent Paramagnetic Relaxation for Probing Protein-Cosolute Interactions.
J Am Chem Soc. 2020 May 6;142(18):8281-8290. doi: 10.1021/jacs.0c00747. Epub 2020 Apr 24.
4
Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids.
J Phys Chem B. 2025 Mar 6;129(9):2537-2545. doi: 10.1021/acs.jpcb.4c08225. Epub 2025 Feb 20.
5
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2112021118.
7
Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics.
Methods. 2018 Sep 15;148:48-56. doi: 10.1016/j.ymeth.2018.04.006. Epub 2018 Apr 12.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids.
J Phys Chem B. 2025 Mar 6;129(9):2537-2545. doi: 10.1021/acs.jpcb.4c08225. Epub 2025 Feb 20.

本文引用的文献

3
Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties.
J Biol Chem. 2023 Jan;299(1):102776. doi: 10.1016/j.jbc.2022.102776. Epub 2022 Dec 7.
5
Measuring Local Electrostatic Potentials Around Nucleic Acids by Paramagnetic NMR Spectroscopy.
J Phys Chem Lett. 2022 Oct 27;13(42):10025-10029. doi: 10.1021/acs.jpclett.2c02623. Epub 2022 Oct 20.
6
Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2210492119. doi: 10.1073/pnas.2210492119. Epub 2022 Aug 30.
7
Measurement of H transverse relaxation rates in proteins: application to solvent PREs.
J Biomol NMR. 2022 Aug;76(4):137-152. doi: 10.1007/s10858-022-00401-4. Epub 2022 Aug 26.
8
Assessment of the Components of the Electrostatic Potential of Proteins in Solution: Comparing Experiment and Theory.
J Phys Chem B. 2022 Jun 23;126(24):4543-4554. doi: 10.1021/acs.jpcb.2c01611. Epub 2022 Jun 13.
9
Protein Electrostatics Investigated through Paramagnetic NMR for Nonpolar Groups.
J Phys Chem B. 2022 Mar 24;126(11):2196-2202. doi: 10.1021/acs.jpcb.1c10930. Epub 2022 Mar 10.
10
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2112021118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验