Byron W, Harrington H, Taylor R J, DeGraw W, Buzinsky N, Dodson B, Fertl M, García A, Garvey G, Graner B, Guigue M, Hayen L, Huyan X, Khaw K S, Knutsen K, McClain D, Melconian D, Müller P, Novitski E, Oblath N S, Robertson R G H, Rybka G, Savard G, Smith E, Stancil D D, Sternberg M, Storm D W, Swanson H E, Tedeschi J R, VanDevender B A, Wietfeldt F E, Young A R, Zhu X
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
Center for Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA.
Phys Rev Lett. 2023 Aug 25;131(8):082502. doi: 10.1103/PhysRevLett.131.082502.
We present an apparatus for detection of cyclotron radiation yielding a frequency-based β^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear β decays. The cyclotron frequency of the radiating β particles in a magnetic field is used to determine the β energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of β^{-}'s from ^{6}He and β^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for β spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic β's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision β-decay measurements.
我们展示了一种用于探测回旋加速器辐射的装置,它能在5 keV至2.1 MeV范围内基于频率确定β±动能,这是核β衰变的特征范围。利用磁场中辐射β粒子的回旋频率来精确确定β能量。我们的工作为应用由8号项目合作团队开发的回旋加速器辐射发射光谱(CRES)技术奠定了基础,该技术的应用范围远远超出了18 keV的氚端点区域。我们报告了对6He衰变产生的β-和19Ne衰变产生的β+的初步测量结果,以展示我们探测系统的宽带响应,并评估在整个(MeV)能量范围内进行β光谱分析时潜在的系统不确定性。据我们所知,这是首次在波导中对单个高度相对论性β粒子的回旋加速器辐射进行直接观测。这项工作确立了CRES在各种原子核上的应用,通过精确的β衰变测量,使其能够用于探索TeV尺度以上的新物理。