Suppr超能文献

离子回旋共振光谱法。回旋双共振为研究离子-分子反应机理提供了一种新技术。

Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.

作者信息

Baldeschwieler J D

出版信息

Science. 1968 Jan 19;159(3812):263-73. doi: 10.1126/science.159.3812.263.

Abstract

Ion cyclotron resonance spectroscopy yields information on many aspects of ion-molecule chemistry. The method is ideally suited for experiments involving ion energies below several electron volts, and hence provides a valuable complement to other techniques (27). eyclotron double resonance is uniquely suitable for establishing relationships between reactant ions and their product ions in complex ion-molecule reaction sequences. The double-resonance experiments with isotopic species yield information on reaction mechanisms and the nature of intermediate species. Ion-molecule reactions which occur at low energies are quite sensitive to the nature of functional groups and the details of molecular structure (28). Reactions of ions or neutral molecules with specific reagents in the cyclotron spectrometer can thus be used to characterize unknown species. Once the systematic ion-molecule chemistry of useful reagents has been worked out, it should be possible to proceed in a manner directly analogous to classical chemical methods. Suppose, for example, that reagents A(+), B(+), C(+), and D(+) each have characteristic reactions with different functional groups. Then these reagents can all be mixed with an unknown neutral species, X, and each of the reactions, X + A(+) --> ?, X + B(+) --> ?, . . . . can be examined. In contrast to solution chemistry, all the reagents can be added simultaneously to the unknown, since each of the specific reactions can be examined by cyclotron double resonance. The reactions which occur, the species synthesized , and the products of degradation then characterize X. The same methodology can be applied to characterize an unknown ionic epecies X(+), through use of neutral reagents A, B, C, and D. For example, proton transfer reactions to neuteal species have been applied in studying ions of mass 45 produced from various sources (29). The order of the proton affinities of the neutral reagent molecules are as follows: NH(3) isobutylene propene. Ions of mass 45 can be produced by the protonation of ethylene oxide (see structure III), the protonation of acetaldehyde (see structure IV), and the fragmentation of dimethyl ether (see structure V). Those ions might be expected to have, respectively, the three structures: Proton transfer from the mass-45 ions from sources III and IV to NH(3) and to isobutylene occurs readily, but not proton transfer to propene. For the ion from source V, proton transfer to NH3 occurs, but not proton transfer to isobutylene or propene. Thus the proton transfer reactions to various neutral reagents demonstrate that the mass-45 ions from the various sources are different. This example is only a rudimentary version of an approach to the characterization of unusual ionic species; niore sophisticated applications can follow when the systematic chemistry of more reagents is available. This approach should be ideal for comparing nonclassical carbonium ions produced by different routes. Some very interesting ionic species are produced by rearrangements in the fragmentation of molecules, following electron impact. Such molecular rearrangements frequently result in the fragmentation of an ion radical to another ion radical with the elimination of a small neutral species (30). It should be possible to run these reactions in reverse to check the postulated mechanisms. An interesting result of the systematic study of proton transfer to various functional groups is the finding that the proton affinity of various amines and pyridine is extremely high (31). Species such as VI and VII: might be expected to be very stable; they are in fact so stable that they are unreactive with respect to subsequent chemistry at the charge center. Thus, if there are other functional groups on the ion, the important reactions should occur at these functional groups. It should be possible to design species for which the presence of the charge has little influence on the reactivity of a neutral functional group. In this case the charge functions simply as an inert label which makes the study of neutral-neutral reactions accessible by cyclotron resonance: Various routes for development of the basic technique also appear to be very promising. Echo phenomena following sequences of pulsed excitation have been observed in electron cyclotron resonance (32). Analogous transient phenomena should also occur in ion cvclotron resonances (33). Pulsed-cyclotron-resonance techniques of course have intriguing analogies to nuclear-magnetic-resonance spin-echo experiments (34) and may be the technique of choice for making accurate measurements of ion-molecule-reaction cross sections as a function of energy for low ion energies. Finally, many ion-molecule reactions yield products in excited electronic states (35). For example, the reaction N(2)- + CO --> N(2) + CO- (46) has been studied by beam techniques (36). A straightforward procedure is to observe optical emission from the cyclotron spectrometer by placing a window at the end of the cyclotron cell (37). The emission can be analyzed with a crude set of optical filters, or with a high-speed spectrograph. Optical emission from the cyclotron cell can of course originate from many sources. The radiation from a specific excited product ion can be selected by a radio-frequency-optical double-resonance experiment. If, in the generai reaction A+ + B --> *C+ + D, (47) ion A+ is irradiated at its cyclotron resonance frequency, the number density of optical emitters *C+ is changed. If the irradiating frequency is modulated, then the number of optical emitters will be modulated, so that the intensity of emission from *C+ will also be modulated. When the optical emission from *C+ is analyzed in a spectrograph with a photoelectric cell, the output of the photoelectric cell can be detected with a phase sensitive detector referenced to the modulation frequency. This highly specific modulation-detection scheme should discriminate against other sources of light in the cyclotron cell.

摘要

离子回旋共振光谱能够提供有关离子 - 分子化学诸多方面的信息。该方法非常适合用于涉及低于几电子伏特离子能量的实验,因此为其他技术提供了有价值的补充(27)。回旋双共振特别适用于在复杂的离子 - 分子反应序列中建立反应物离子与其产物离子之间的关系。对同位素物种进行的双共振实验能够提供有关反应机理和中间物种性质的信息。在低能量下发生的离子 - 分子反应对官能团的性质和分子结构的细节非常敏感(28)。因此,在回旋光谱仪中离子或中性分子与特定试剂的反应可用于表征未知物种。一旦确定了有用试剂的系统离子 - 分子化学,就应该能够以与经典化学方法直接类似的方式进行研究。例如,假设试剂A(+)、B(+)、C(+)和D(+)各自与不同的官能团具有特征反应。那么这些试剂都可以与未知的中性物种X混合,并且可以研究每个反应,X + A(+) -->?,X + B(+) -->?,......与溶液化学不同,所有试剂可以同时添加到未知物中,因为每个特定反应都可以通过回旋双共振进行研究。发生的反应、合成的物种以及降解产物随后可用于表征X。相同的方法可以通过使用中性试剂A、B、C和D来表征未知离子物种X(+)。例如,质子转移反应到中性物种已被应用于研究从各种来源产生的质量为45的离子(29)。中性试剂分子的质子亲和力顺序如下:NH₃>异丁烯>丙烯。质量为45的离子可以通过环氧乙烷的质子化(见结构III)、乙醛的质子化(见结构IV)以及二甲醚的裂解(见结构V)产生。预计这些离子可能分别具有三种结构:来自来源III和IV的质量为45的离子向NH₃和异丁烯的质子转移很容易发生,但向丙烯的质子转移则不会发生。对于来自来源V的离子,向NH₃的质子转移会发生,但向异丁烯或丙烯的质子转移则不会发生。因此,向各种中性试剂的质子转移反应表明来自各种来源的质量为45的离子是不同的。这个例子只是表征不寻常离子物种方法的一个基本版本;当有更多试剂的系统化学信息时,可以进行更复杂的应用。这种方法对于比较通过不同途径产生的非经典碳正离子应该是理想的。一些非常有趣的离子物种是在分子电子碰撞裂解过程中的重排反应中产生的。这种分子重排经常导致离子自由基裂解为另一个离子自由基并消除一个小的中性物种(30)。应该可以进行这些反应的逆反应来检验假设的机理。对各种官能团进行质子转移的系统研究的一个有趣结果是发现各种胺和吡啶的质子亲和力极高(31)。诸如VI和VII这样的物种:可能预计非常稳定;实际上它们非常稳定,以至于在电荷中心处相对于后续化学反应是无反应性的。因此,如果离子上还有其他官能团,重要的反应应该发生在这些官能团上。应该可以设计出电荷的存在对中性官能团的反应性影响很小的物种。在这种情况下,电荷仅作为一个惰性标签,使得通过回旋共振研究中性 - 中性反应成为可能:基本技术的各种发展途径似乎也非常有前景。在电子回旋共振中已经观察到脉冲激发序列后的回波现象(32)。类似的瞬态现象也应该在离子回旋共振中出现(33)。脉冲回旋共振技术当然与核磁共振自旋回波实验有有趣的相似之处(34),并且可能是在低离子能量下作为能量函数精确测量离子 - 分子反应截面的首选技术。最后,许多离子 - 分子反应产生处于激发电子态的产物(35)。例如,通过束流技术研究了反应N₂⁻ + CO --> N₂ + CO⁻(46)(36)。一个直接的程序是通过在回旋管单元的末端放置一个窗口来观察回旋光谱仪的光发射(37)。发射可以用一组粗略的光学滤波器进行分析,或者用高速光谱仪进行分析。回旋管单元的光发射当然可以源自许多来源。通过射频 - 光学双共振实验可以选择特定激发产物离子的辐射。如果在一般反应A⁺ + B --> C⁺ + D(47)中,离子A⁺以其回旋共振频率被辐照,光发射体C⁺的数密度会发生变化。如果辐照频率被调制,那么光发射体的数量也会被调制,从而C⁺的发射强度也会被调制。当用带有光电管的光谱仪分析C⁺的光发射时,光电管的输出可以用参考调制频率的相敏探测器进行检测。这种高度特异性的调制检测方案应该能够区分回旋管单元中其他的光源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验