Busch Johanna, Paschek Dietmar
Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Str. 27, D-18059 Rostock, Germany.
J Phys Chem B. 2023 Sep 21;127(37):7983-7987. doi: 10.1021/acs.jpcb.3c04492. Epub 2023 Sep 8.
Recently, an analytical expression for the system size dependence and direction-dependence of self-diffusion coefficients for neat liquids due to hydrodynamic interactions has been derived for molecular dynamics (MD) simulations using orthorhombic unit cells. Based on this description, we show that for systems with a "magic" box length ratio of / = / = 2.7933596497 the computed self-diffusion coefficients and in the - and -direction become system-size independent and represent the true self-diffusion coefficient = ( + )/2. Moreover, by using this particular box geometry, the viscosity can be determined with a reasonable degree of accuracy from the difference of components of the diffusion coefficients in -, -, and -directions using the simple expression η = × 8.1711245653/[3( + - 2)], where denotes Boltzmann's constant and represents the temperature. MD simulations of TIP4P/2005 water for various system sizes using both orthorhombic and cubic box geometries are used to test the approach.
最近,利用正交晶胞对分子动力学(MD)模拟推导了纯液体中由于流体动力学相互作用导致的自扩散系数的系统尺寸依赖性和方向依赖性的解析表达式。基于此描述,我们表明,对于具有“神奇”盒长比 / = / = 2.7933596497 的系统,在 - 方向和 - 方向上计算得到的自扩散系数 和 与系统尺寸无关,并且代表了真实的自扩散系数 = ( + )/2。此外,通过使用这种特定的盒几何形状,可以使用简单表达式 η = × 8.1711245653/[3( + - 2)],根据 - 、 - 和 - 方向上扩散系数分量的差值以合理的精度确定粘度,其中 表示玻尔兹曼常数, 表示温度。使用正交和立方盒几何形状对不同系统尺寸的TIP4P/2005水进行MD模拟以测试该方法。