Busch Johanna, Paschek Dietmar
Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Str. 27, D-18059 Rostock, Germany.
J Phys Chem B. 2024 Feb 1;128(4):1040-1052. doi: 10.1021/acs.jpcb.3c07540. Epub 2024 Jan 19.
In a recent paper [Busch, J.; Paschek, D. 2023, 127, 7983-7987], we have shown that for molecular dynamics (MD) simulations using orthorhombic periodic boundary conditions with "magic" box length ratios of / = / = 2.7933596497, the self-diffusion coefficients and in - and -directions are independent of the system size. They both represent the true self-diffusion coefficient = ( + )/2, while the shear viscosity can be calculated from diffusion coefficients in -, -, and -directions, using η = ·8.1711245653/[3π( + - 2)]. In this contribution, we test this "OrthoBoXY" approach by its application to a variety of different systems: liquid water, dimethyl ether, methanol, triglyme, water/methanol mixtures, water/triglyme mixtures, and imidazolium-based ionic liquids. The chosen systems range from small-sized molecular liquids to complex mixtures and ionic liquids, while spanning a viscosity range of almost 3 orders of magnitude. We assess the efficiency of the method for computing true self-diffusion and viscosity data and provide simple formulas for estimating the required MD simulation lengths and sizes for delivering reliable data with targeted uncertainty levels. Our analysis of the system size dependence of statistical uncertainties for both the viscosity and the self-diffusion coefficient leads us to the conclusion that it is preferable to extend the simulation length instead of increasing the system size. MD simulations consisting of 768 molecules or ion pairs seem to be perfectly adequate.
在最近的一篇论文[布施,J.;帕施克,D.《2023年,127卷,7983 - 7987页》]中,我们已经表明,对于使用正交晶系周期性边界条件且“神奇”的盒子长度比(l_x/l_y = l_y/l_z = 2.7933596497)的分子动力学(MD)模拟,(x)方向和(y)方向的自扩散系数(D_x)和(D_y)与系统大小无关。它们都代表真实的自扩散系数(D = (D_x + D_y)/2),而剪切粘度可以根据(x)、(y)和(z)方向的扩散系数计算得出,公式为(\eta = k_BT\cdot8.1711245653/[3\pi(D_x + D_y - 2D_z)])。在本论文中,我们通过将这种“OrthoBoXY”方法应用于各种不同的系统来进行测试:液态水、二甲醚、甲醇、三甘醇二甲醚、水/甲醇混合物、水/三甘醇二甲醚混合物以及咪唑基离子液体。所选择的系统从小分子液体到复杂混合物再到离子液体,粘度范围跨越近3个数量级。我们评估了该方法计算真实自扩散和粘度数据的效率,并提供了简单公式来估计为获得具有目标不确定度水平的可靠数据所需的MD模拟长度和大小。我们对粘度和自扩散系数的统计不确定度与系统大小的相关性分析得出结论,延长模拟长度而非增加系统大小更为可取。由768个分子或离子对组成的MD模拟似乎就完全足够了。