Suppr超能文献

1H NMR study of dynamics and thermodynamics of heme rotational disorder in native and reconstituted hemoglobin A.

作者信息

Yamamoto Y, La Mar G N

出版信息

Biochemistry. 1986 Sep 9;25(18):5288-97. doi: 10.1021/bi00366a045.

Abstract

The reaction of heme and apoprotein has been studied in detail in 1H NMR spectroscopy in order to elucidate the conditions for reconstitution of hemoglobin (Hb) to yield the native protein. The initially formed holoprotein exists as a mixture of isomers with individual subunits possessing the two heme orientations differing by a 180 degrees rotation about the alpha, gamma-meso axis [La Mar, G. N., Yamamoto, Y., Jue, T., Smith, K. M., & Pandey, R. K. (1985) Biochemistry 24, 3826-3831]. We characterize in detail herein the rates and mechanism of heme reorientation and show that the rates differ dramatically for met-aquo and met-azido derivatives and are highly pH dependent in both subunits in a fashion that allows selective equilibration in either subunit. Nonequilibrium mixtures of such isomers can be kinetically trapped in the met-azido form and stored in this metastable form for many months. With kinetically controlled heme orientationally disordered Hb, unambiguous assignment of 1H NMR resonances to individual subunits has been made for the met-azido derivative, which demonstrates approximately 2% and 10% equilibrium heme disorder in the alpha- and beta-subunits, respectively. Comparison of the 1H NMR spectra of various heme rotationally disordered Hb derivatives indicates that this disorder is observable in all forms studied, but is most easily recognized as heme disorder and most conveniently monitored in the met-azido complex. Structural consequences of heme disorder appear to manifest themselves much more strongly in peripheral than axial interactions at the heme. Preliminary studies reveal that both the rate of autoxidation of oxy-Hb and the azide affinity of met-aquo-Hb depend on the orientation of the heme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验