Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France.
Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, 62 avenue Notre-Dame du Lac, France; University of Catholique de l'Ouest, Angers-Nantes, 49000, France.
Comput Biol Med. 2023 Oct;165:107427. doi: 10.1016/j.compbiomed.2023.107427. Epub 2023 Sep 1.
Epilepsy is a neurological disorder characterized by recurring seizures, detected by electroencephalography (EEG). EEG signals can be detected by manual time-consuming analysis and recently by automatic detection. The latter poses a significant challenge due to the high dimensional and non-stationary nature of EEG signals. Recently, deep learning (DL) techniques have emerged as valuable tools for seizure detection. In this study, a novel data-driven model based on DL, incorporating a self-attention mechanism (SAT), is proposed. One notable advantage of the proposed method is its simplicity in application, as the raw signal data is directly fed into the suggested network without requiring expertise in signal processing. The model leverages a one-dimensional convolutional neural network (CNN) to extract relevant features from EEG signals. These features are then passed through a long short-term memory (LSTM) module to benefit from its memory capabilities, along with a SAT mechanism. The key contribution of this paper lies in the addition of the SAT layer to the LSTM encoder, enabling enhanced exploration of the latent mapping during the encoding step. Cross-subject experiments revealed good performance of this approach with F1-score of 97.8% and 92.7% for binary and five-class epileptic seizure recognition tasks, respectively, on the public UCI dataset, and 97.9% on the CHB-MIT database, surpassing state-of-the-art DL performance. Besides, the proposed method exhibits robustness to inter-subject variability.
癫痫是一种以反复癫痫发作(由脑电图(EEG)检测到)为特征的神经障碍。脑电图信号可以通过手动耗时的分析和最近的自动检测来检测。由于脑电图信号的高维性和非平稳性,后者构成了重大挑战。最近,深度学习(DL)技术已成为癫痫检测的有价值工具。在这项研究中,提出了一种基于深度学习的新数据驱动模型,该模型包含自注意力机制(SAT)。该方法的一个显著优点是应用简单,因为原始信号数据直接输入到建议的网络中,而无需信号处理方面的专业知识。该模型利用一维卷积神经网络(CNN)从 EEG 信号中提取相关特征。然后,这些特征通过长短期记忆(LSTM)模块传递,以利用其记忆能力以及 SAT 机制。本文的主要贡献在于在 LSTM 编码器中添加 SAT 层,从而在编码步骤中增强对潜在映射的探索。跨主题实验表明,在公共 UCI 数据集上,该方法在二进制和五分类癫痫发作识别任务中的 F1 分数分别为 97.8%和 92.7%,在 CHB-MIT 数据库上的 F1 分数为 97.9%,优于最先进的 DL 性能。此外,该方法对受试者间变异性具有鲁棒性。