Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Digital Aviation Lab, Boeing, Vancouver, BC V6B 2X6, Canada.
Microsoft Research AI, Redmond, WA 98052, United States.
Clin Neurophysiol. 2019 Jan;130(1):25-37. doi: 10.1016/j.clinph.2018.10.010. Epub 2018 Nov 15.
Automatic detection of epileptic seizures based on deep learning methods received much attention last year. However, the potential of deep neural networks in seizure detection has not been fully exploited in terms of the optimal design of the model architecture and the detection power of the time-series brain data. In this work, a deep neural network architecture is introduced to learn the temporal dependencies in Electroencephalogram (EEG) data for robust detection of epileptic seizures.
A deep Long Short-Term Memory (LSTM) network is first used to learn the high-level representations of different EEG patterns. Then, a Fully Connected (FC) layer is adopted to extract the most robust EEG features relevant to epileptic seizures. Finally, these features are supplied to a softmax layer to output predicted labels.
The results on a benchmark clinical dataset reveal the prevalence of the proposed approach over the baseline techniques; achieving 100% classification accuracy, 100% sensitivity, and 100% specificity. Our approach is additionally shown to be robust in noisy and real-life conditions. It maintains high detection performance in the existence of common EEG artifacts (muscle activities and eye movement) as well as background noise.
We demonstrate the clinical feasibility of our seizure detection approach achieving superior performance over the cutting-edge techniques in terms of seizure detection performance and robustness.
Our seizure detection approach can contribute to accurate and robust detection of epileptic seizures in ideal and real-life situations.
基于深度学习方法的自动癫痫发作检测在去年受到了广泛关注。然而,在模型架构的最优设计和时间序列脑数据的检测能力方面,深度神经网络在癫痫发作检测中的潜力尚未得到充分利用。在这项工作中,引入了一种深度神经网络架构,以学习脑电图 (EEG) 数据中的时间依赖性,从而实现对癫痫发作的稳健检测。
首先使用深度长短时记忆 (LSTM) 网络学习不同 EEG 模式的高级表示。然后,采用全连接 (FC) 层提取与癫痫发作最相关的最稳健的 EEG 特征。最后,将这些特征提供给 softmax 层以输出预测标签。
在基准临床数据集上的结果表明,该方法优于基线技术;实现了 100%的分类准确率、100%的灵敏度和 100%的特异性。此外,我们的方法在噪声和真实环境中也表现出稳健性。它在存在常见 EEG 伪影(肌肉活动和眼动)以及背景噪声的情况下仍能保持高检测性能。
我们证明了我们的癫痫发作检测方法的临床可行性,在癫痫发作检测性能和稳健性方面优于最先进的技术。
我们的癫痫发作检测方法可以为理想和真实环境中癫痫发作的准确和稳健检测做出贡献。