Suppr超能文献

呼气生物标志物对肺癌与其他部位癌症的选择性。

Selectivity of Exhaled Breath Biomarkers of Lung Cancer in Relation to Cancer of Other Localizations.

机构信息

Department of Analytical Chemistry, Kuban State University, Stavropol'skaya St. 149, Krasnodar 350040, Russia.

Research Institute-Regional Clinical Hospital N° 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar 350086, Russia.

出版信息

Int J Mol Sci. 2023 Aug 28;24(17):13350. doi: 10.3390/ijms241713350.

Abstract

Lung cancer is a leading cause of death worldwide, mostly due to diagnostics in the advanced stage. Therefore, the development of a quick, simple, and non-invasive diagnostic tool to identify cancer is essential. However, the creation of a reliable diagnostic tool is possible only in case of selectivity to other diseases, particularly, cancer of other localizations. This paper is devoted to the study of the variability of exhaled breath samples among patients with lung cancer and cancer of other localizations, such as esophageal, breast, colorectal, kidney, stomach, prostate, cervix, and skin. For this, gas chromatography-mass spectrometry (GC-MS) was used. Two classification models were built. The first model separated patients with lung cancer and cancer of other localizations. The second model classified patients with lung, esophageal, breast, colorectal, and kidney cancer. Mann-Whitney U tests and Kruskal-Wallis H tests were applied to identify differences in investigated groups. Discriminant analysis (DA), gradient-boosted decision trees (GBDT), and artificial neural networks (ANN) were applied to create the models. In the case of classifying lung cancer and cancer of other localizations, average sensitivity and specificity were 68% and 69%, respectively. However, the accuracy of classifying groups of patients with lung, esophageal, breast, colorectal, and kidney cancer was poor.

摘要

肺癌是全球主要的致死原因,主要是由于在晚期才被诊断出来。因此,开发一种快速、简单、非侵入性的诊断工具来识别癌症是至关重要的。然而,只有在对其他疾病具有选择性的情况下,才有可能创建一个可靠的诊断工具,特别是对其他部位的癌症。本文致力于研究肺癌患者和其他部位癌症患者(如食管癌、乳腺癌、结直肠癌、肾癌、胃癌、前列腺癌、宫颈癌和皮肤癌)呼出样本的可变性。为此,我们使用了气相色谱-质谱联用技术(GC-MS)。建立了两个分类模型。第一个模型将肺癌患者和其他部位癌症患者区分开来。第二个模型将肺癌、食管癌、乳腺癌、结直肠癌和肾癌患者进行分类。应用曼-惠特尼 U 检验和克鲁斯卡尔-沃利斯 H 检验来识别研究组之间的差异。应用判别分析(DA)、梯度提升决策树(GBDT)和人工神经网络(ANN)来创建模型。在区分肺癌和其他部位癌症的情况下,平均灵敏度和特异性分别为 68%和 69%。然而,区分肺癌、食管癌、乳腺癌、结直肠癌和肾癌患者组的准确性较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22be/10488072/b5be662dee4f/ijms-24-13350-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验