Guadagno Liberata, Naddeo Carlo, Sorrentino Andrea, Raimondo Marialuigia
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Previati n. 1/E, 23900 Lecco, Italy.
Nanomaterials (Basel). 2023 Aug 26;13(17):2427. doi: 10.3390/nano13172427.
This study focuses on epoxy hybrid systems prepared by incorporating multi-wall carbon nanotubes (MWCNTs) and graphene nanosheets (GNs) at two fixed filler amounts: below (0.1 wt%) and above (0.5 wt%), with varying MWCNT:GN mix ratios. The hybrid epoxy systems exhibited remarkable electrical performance, attributed to the π-π bond interactions between the multi-wall carbon nanotubes and the graphene layers dispersed in the epoxy resin matrix. The material's properties were characterized through dynamic mechanical and thermal analyses over a wide range of temperatures. In addition to excellent electrical properties, the formulated hybrid systems demonstrated high mechanical performance and thermal stability. Notably, the glass transition temperature of the samples reached 255 °C, and high storage modulus values at elevated temperatures were observed. The hybrid systems also displayed thermal stability up to 360 °C in air. By comparing the mechanical and electrical performance, the formulation can be optimized in terms of the electrical percolation threshold (EPT), electrical conductivity, thermostability, and mechanical parameters. This research provides valuable insights for designing advanced epoxy-based materials with multifunctional properties.
本研究聚焦于通过在两种固定填料含量(低于0.1 wt%和高于0.5 wt%)下加入多壁碳纳米管(MWCNT)和石墨烯纳米片(GN)制备的环氧混合体系,且MWCNT与GN的混合比例各不相同。该混合环氧体系展现出卓越的电学性能,这归因于多壁碳纳米管与分散在环氧树脂基体中的石墨烯层之间的π-π键相互作用。通过在很宽的温度范围内进行动态力学和热分析来表征该材料的性能。除了优异的电学性能外,所制备的混合体系还表现出高机械性能和热稳定性。值得注意的是,样品的玻璃化转变温度达到255℃,并且在高温下观察到较高的储能模量值。该混合体系在空气中还表现出高达360℃的热稳定性。通过比较机械和电学性能,可以在电渗流阈值(EPT)、电导率、热稳定性和机械参数方面对配方进行优化。本研究为设计具有多功能特性的先进环氧基材料提供了有价值的见解。