Suppr超能文献

使用扩展相似性指数进行化学空间的采样与映射

Sampling and Mapping Chemical Space with Extended Similarity Indices.

作者信息

López-Pérez Kenneth, López-López Edgar, Medina-Franco José L, Miranda-Quintana Ramón Alain

机构信息

Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA.

DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico.

出版信息

Molecules. 2023 Aug 30;28(17):6333. doi: 10.3390/molecules28176333.

Abstract

Visualization of the chemical space is useful in many aspects of chemistry, including compound library design, diversity analysis, and exploring structure-property relationships, to name a few. Examples of notable research areas where the visualization of chemical space has strong applications are drug discovery and natural product research. However, the sheer volume of even comparatively small sub-sections of chemical space implies that we need to use approximations at the time of navigating through chemical space. ChemMaps is a visualization methodology that approximates the distribution of compounds in large datasets based on the selection of satellite compounds that yield a similar mapping of the whole dataset when principal component analysis on a similarity matrix is performed. Here, we show how the recently proposed extended similarity indices can help find regions that are relevant to sample satellites and reduce the amount of high-dimensional data needed to describe a library's chemical space.

摘要

化学空间的可视化在化学的许多方面都很有用,包括化合物库设计、多样性分析以及探索结构-性质关系等等。化学空间可视化具有强大应用的显著研究领域包括药物发现和天然产物研究。然而,即使是化学空间中相对较小的子部分,其数据量也非常庞大,这意味着我们在浏览化学空间时需要使用近似方法。ChemMaps是一种可视化方法,它基于卫星化合物的选择来近似大型数据集中化合物的分布,当对相似性矩阵进行主成分分析时,这些卫星化合物能产生与整个数据集相似的映射。在这里,我们展示了最近提出的扩展相似性指数如何有助于找到与样本卫星相关的区域,并减少描述库的化学空间所需的高维数据量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ef/10489020/972cb431aefc/molecules-28-06333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验