Suppr超能文献

用于生物医学应用的电沉积锌涂层:形态、腐蚀及生物学行为

Electrodeposited Zinc Coatings for Biomedical Application: Morphology, Corrosion and Biological Behaviour.

作者信息

Tamurejo-Alonso Purificación, González-Martín María Luisa, Pacha-Olivenza Miguel Ángel

机构信息

Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain.

University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain.

出版信息

Materials (Basel). 2023 Aug 31;16(17):5985. doi: 10.3390/ma16175985.

Abstract

The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.

摘要

目前,可生物降解金属因其在植入物制造方面的能力,是一个活跃且有前景的研究领域。然而,一旦其表面与生理介质接触,控制其降解速率是一项挑战。表面处理是解决这一控制问题的方法。锌是一种存在于人体中的生物相容性金属,也是一种广泛用于涂层以防止腐蚀的金属,因其具有众所周知的金属保护作用。这两个突出特性使得锌涂层在改善植入物降解行为方面值得考虑。电沉积是在金属上制备保护性锌涂层最实用、最常见的技术之一。本文旨在综述电化学过程中涉及的不同参数对锌涂层形貌和腐蚀特性的影响。当然,它也实际且全面地描述了电沉积锌在生物医学应用方面的最新进展,重点关注其防止细菌定植以及促进细胞黏附与增殖的能力。

相似文献

2
Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis.
Mater Sci Eng C Mater Biol Appl. 2021 Oct;129:112387. doi: 10.1016/j.msec.2021.112387. Epub 2021 Aug 21.
4
Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31.
Acta Biomater. 2019 Oct 15;98:196-214. doi: 10.1016/j.actbio.2019.05.069. Epub 2019 May 31.
5
Deposition of Zinc⁻Cerium Coatings from Deep Eutectic Ionic Liquids.
Materials (Basel). 2018 Oct 19;11(10):2035. doi: 10.3390/ma11102035.
6
Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review.
Acta Biomater. 2019 Apr 15;89:14-32. doi: 10.1016/j.actbio.2019.03.006. Epub 2019 Mar 6.
7
Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants.
Sci Technol Adv Mater. 2015 Sep 8;16(5):053501. doi: 10.1088/1468-6996/16/5/053501. eCollection 2015 Oct.
8
Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings.
Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:681-686. doi: 10.1016/j.msec.2016.06.010. Epub 2016 Jun 4.
10
Development of a novel biodegradable and anti-bacterial polyurethane coating for biomedical magnesium rods.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:344-356. doi: 10.1016/j.msec.2019.01.119. Epub 2019 Jan 27.

本文引用的文献

1
Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.
Nanotechnology. 2007 May 4;18(22). doi: 10.1088/0957-4484/18/22/225103.
3
One-step electrodeposition of ZnO/graphene composites with enhanced capability for photocatalytic degradation of organic dyes.
Front Chem. 2022 Nov 2;10:1061129. doi: 10.3389/fchem.2022.1061129. eCollection 2022.
4
In situ growth of Ca-Zn-P coatings on the Zn-pretreated WE43 Mg alloy to mitigate corrosion and enhance cytocompatibility.
Colloids Surf B Biointerfaces. 2022 Oct;218:112798. doi: 10.1016/j.colsurfb.2022.112798. Epub 2022 Aug 24.
5
Wear and corrosion resistance of Co-P coatings: the effects of current modes.
RSC Adv. 2018 Jan 3;8(2):895-903. doi: 10.1039/c7ra10830c. eCollection 2018 Jan 2.
6
An overview of recent progress in dental applications of zinc oxide nanoparticles.
RSC Adv. 2021 Jun 15;11(34):21189-21206. doi: 10.1039/d0ra10789a. eCollection 2021 Jun 9.
7
Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications.
Materials (Basel). 2022 Mar 15;15(6):2160. doi: 10.3390/ma15062160.
8
Important interventions in the operating room to prevent bacterial contamination and surgical site infections.
Am J Infect Control. 2022 Sep;50(9):1049-1054. doi: 10.1016/j.ajic.2021.12.021. Epub 2021 Dec 29.
9
Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations.
Int J Biol Sci. 2021 Aug 3;17(13):3413-3427. doi: 10.7150/ijbs.62506. eCollection 2021.
10
A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells.
Colloids Surf B Biointerfaces. 2021 Apr;200:111571. doi: 10.1016/j.colsurfb.2021.111571. Epub 2021 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验