Suppr超能文献

通过物理气相沉积磁控溅射制备用于生物医学应用的离子取代磷酸钙涂层:综述。

Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review.

机构信息

School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia.

School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia.

出版信息

Acta Biomater. 2019 Apr 15;89:14-32. doi: 10.1016/j.actbio.2019.03.006. Epub 2019 Mar 6.

Abstract

Coatings based on ion-substituted calcium phosphate (Ca-P) have attracted great attention in the scientific community over the past decade for the development of biomedical applications. Among such Ca-P based structures, hydroxyapatite (HA) has shown significant influence on cell behaviors including cell proliferation, adhesion, and differentiation. These cell behaviors determine the osseointegration between the implant and host bone and the biocompatibility of implants. This review presents a critical analysis on the physical vapor deposition magnetron sputtering (PVDMS) technique that has been used for ion-substituted Ca-P based coatings on implants materials. The effect of PVDMS processing parameters such as discharge power, bias voltage, deposition time, substrate temperature, and post-heat treatment on the surface properties of ion-substituted Ca-P coatings is elucidated. Moreover, the advantages, short comings and future research directions of Ca-P coatings by PVDMS have been comprehensively analyzed. It is revealed that the topography and surface chemistry of amorphous HA coatings influence the cell behavior, and ion-substituted HA coatings significantly increase cell attachment but may result in a cytotoxic effect that reduces the growth of the cells attached to the coating surface areas. Meanwhile, low-crystalline HA coatings exhibit lower rates of osteogenic cell proliferation as compared to highly crystalline HA coatings developed on Ti based surfaces. PVDMS allows a close reproduction of bioapatite characteristics with high adhesion strength and substitution of therapeutic ions. It can also be used for processing nanostructured Ca-P coatings on polymeric biomaterials and biodegradable metals and alloys with enhanced corrosion resistance and biocompatibility. STATEMENT OF SIGNIFICANCE: Recent studies have utilized the physical vapor deposition magnetron sputtering (PVDMS) for the deposition of Ca-P and ion-substituted Ca-P thin film coatings on orthopedic and dental implants. This review explains the effect of PVDMS processing parameters, such as discharge power, bias voltage, deposition time, substrate temperature, and post-heat treatment, on the surface morphology and crystal structure of ion-substituted Ca-P and ion-substituted Ca-P thin coatings. It is revealed that coating thickness, surface morphology and crystal structure of ion-substituted Ca-P coatings via PVDMS directly affect the biocompatibility and cell responses of such structures. The cell responses determine the osseointegration between the implant and host bone and eventually the success of the implants.

摘要

基于离子取代的钙磷(Ca-P)的涂层在过去十年中引起了科学界的极大关注,因为它们在生物医学应用方面具有发展潜力。在这些基于 Ca-P 的结构中,羟基磷灰石(HA)对细胞行为有显著影响,包括细胞增殖、黏附和分化。这些细胞行为决定了植入物与宿主骨之间的骨整合和植入物的生物相容性。本综述对用于植入材料的离子取代 Ca-P 基涂层的物理气相沉积磁控溅射(PVDMS)技术进行了批判性分析。阐述了 PVDMS 处理参数(如放电功率、偏置电压、沉积时间、衬底温度和后热处理)对离子取代 Ca-P 涂层表面性能的影响。此外,还全面分析了 PVDMS 制备 Ca-P 涂层的优点、缺点和未来研究方向。结果表明,非晶态 HA 涂层的形貌和表面化学影响细胞行为,而离子取代的 HA 涂层显著增加了细胞黏附,但可能导致细胞毒性效应,从而降低黏附在涂层表面的细胞的生长。同时,与在 Ti 基表面开发的高结晶态 HA 涂层相比,低结晶态 HA 涂层表现出较低的成骨细胞增殖率。PVDMS 允许高度复制具有高附着力和治疗离子取代的生物磷灰石特性。它还可用于处理具有增强耐腐蚀性和生物相容性的聚合物生物材料以及可生物降解的金属和合金上的纳米结构 Ca-P 涂层。

意义声明

最近的研究利用物理气相沉积磁控溅射(PVDMS)在骨科和牙科植入物上沉积 Ca-P 和离子取代的 Ca-P 薄膜涂层。本综述解释了 PVDMS 处理参数(如放电功率、偏置电压、沉积时间、衬底温度和后热处理)对离子取代的 Ca-P 和离子取代的 Ca-P 薄膜涂层的表面形貌和晶体结构的影响。结果表明,通过 PVDMS 制备的离子取代的 Ca-P 涂层的厚度、表面形貌和晶体结构直接影响这些结构的生物相容性和细胞反应。细胞反应决定了植入物与宿主骨之间的骨整合,最终决定了植入物的成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验