Suppr超能文献

基于残差注意力机制的语义分割与深度估计

Semantic Segmentation and Depth Estimation Based on Residual Attention Mechanism.

作者信息

Ji Naihua, Dong Huiqian, Meng Fanyun, Pang Liping

机构信息

School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China.

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2023 Aug 28;23(17):7466. doi: 10.3390/s23177466.

Abstract

Semantic segmentation and depth estimation are crucial components in the field of autonomous driving for scene understanding. Jointly learning these tasks can lead to a better understanding of scenarios. However, using task-specific networks to extract global features from task-shared networks can be inadequate. To address this issue, we propose a multi-task residual attention network (MTRAN) that consists of a global shared network and two attention networks dedicated to semantic segmentation and depth estimation. The convolutional block attention module is used to highlight the global feature map, and residual connections are added to prevent network degradation problems. To ensure manageable task loss and prevent specific tasks from dominating the training process, we introduce a random-weighted strategy into the impartial multi-task learning method. We conduct experiments to demonstrate the effectiveness of the proposed method.

摘要

语义分割和深度估计是自动驾驶领域场景理解的关键组成部分。联合学习这些任务可以更好地理解场景。然而,使用特定任务网络从任务共享网络中提取全局特征可能并不充分。为了解决这个问题,我们提出了一种多任务残差注意力网络(MTRAN),它由一个全局共享网络和两个分别用于语义分割和深度估计的注意力网络组成。卷积块注意力模块用于突出全局特征图,并添加残差连接以防止网络退化问题。为了确保任务损失可控并防止特定任务主导训练过程,我们在公平多任务学习方法中引入了随机加权策略。我们进行实验以证明所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932e/10490601/77169d6b0ce7/sensors-23-07466-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验