He Xueqin, Xu Wenjie, Yang Jane, Mao Jianyao, Chen Sifang, Wang Zhanxiang
School of Informatics, Xiamen University, Xiamen, China.
Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States.
Front Neurosci. 2021 Nov 26;15:782968. doi: 10.3389/fnins.2021.782968. eCollection 2021.
As a non-invasive, low-cost medical imaging technology, magnetic resonance imaging (MRI) has become an important tool for brain tumor diagnosis. Many scholars have carried out some related researches on MRI brain tumor segmentation based on deep convolutional neural networks, and have achieved good performance. However, due to the large spatial and structural variability of brain tumors and low image contrast, the segmentation of MRI brain tumors is challenging. Deep convolutional neural networks often lead to the loss of low-level details as the network structure deepens, and they cannot effectively utilize the multi-scale feature information. Therefore, a deep convolutional neural network with a multi-scale attention feature fusion module (MAFF-ResUNet) is proposed to address them. The MAFF-ResUNet consists of a U-Net with residual connections and a MAFF module. The combination of residual connections and skip connections fully retain low-level detailed information and improve the global feature extraction capability of the encoding block. Besides, the MAFF module selectively extracts useful information from the multi-scale hybrid feature map based on the attention mechanism to optimize the features of each layer and makes full use of the complementary feature information of different scales. The experimental results on the BraTs 2019 MRI dataset show that the MAFF-ResUNet can learn the edge structure of brain tumors better and achieve high accuracy.
作为一种非侵入性、低成本的医学成像技术,磁共振成像(MRI)已成为脑肿瘤诊断的重要工具。许多学者基于深度卷积神经网络对MRI脑肿瘤分割进行了一些相关研究,并取得了良好的性能。然而,由于脑肿瘤的空间和结构变化较大且图像对比度低,MRI脑肿瘤的分割具有挑战性。随着网络结构的加深,深度卷积神经网络常常导致低级细节的丢失,并且它们不能有效地利用多尺度特征信息。因此,提出了一种具有多尺度注意力特征融合模块的深度卷积神经网络(MAFF-ResUNet)来解决这些问题。MAFF-ResUNet由一个带有残差连接的U-Net和一个MAFF模块组成。残差连接和跳跃连接的结合充分保留了低级细节信息,并提高了编码块的全局特征提取能力。此外,MAFF模块基于注意力机制从多尺度混合特征图中选择性地提取有用信息,以优化各层的特征,并充分利用不同尺度的互补特征信息。在BraTs 2019 MRI数据集上的实验结果表明,MAFF-ResUNet能够更好地学习脑肿瘤的边缘结构并实现高精度。