Suppr超能文献

边缘系统中具有隐私保护视角的可互操作 IoMT 远程诊断方法。

Interoperable IoMT Approach for Remote Diagnosis with Privacy-Preservation Perspective in Edge Systems.

机构信息

Department of Computer Science and Business Systems, Ramco Institute of Technology, Rajapalayam 626117, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India.

出版信息

Sensors (Basel). 2023 Aug 28;23(17):7474. doi: 10.3390/s23177474.

Abstract

The emergence of the Internet of Medical Things (IoMT) has brought together developers from the Industrial Internet of Things (IIoT) and healthcare providers to enable remote patient diagnosis and treatment using mobile-device-collected data. However, the utilization of traditional AI systems raises concerns about patient privacy. To address this issue, we present a privacy-enhanced approach for illness diagnosis within the IoMT framework. Our proposed interoperable IoMT implementation focuses on optimizing IoT network performance, including throughput, energy consumption, latency, packet delivery ratio, and network longevity. We achieve these improvements using techniques such as device authentication, energy-efficient clustering, environmental monitoring using Circular-based Hidden Markov Model (C-HMM), data verification using Awad's Entropy-based Ten-Fold Cross Entropy Verification (TCEV), and data confidentiality using Twine-LiteNet-based encryption. We employ the Search and Rescue Optimization algorithm (SRO) for optimal route selection, and the encrypted data are securely stored in a cloud server. With extensive network simulations using ns-3, our approach demonstrates substantial enhancements in the specified performance metrics compared with previous works. Specifically, we observe a 20% increase in throughput, a 15% reduction in packet drop rate (PDR), a 35% improvement in network lifetime, and a 10% decrease in energy consumption and delay. These findings underscore the efficacy of our approach in enhancing IoT network interoperability and protection, fostering improved patient care and diagnostic capabilities.

摘要

物联网医疗(IoMT)的出现将工业物联网(IIoT)的开发者与医疗保健提供者聚集在一起,利用移动设备收集的数据实现远程患者诊断和治疗。然而,传统人工智能系统的使用引发了对患者隐私的担忧。为了解决这个问题,我们提出了一种在 IoMT 框架内增强隐私的疾病诊断方法。我们提出的互操作 IoMT 实现侧重于优化物联网网络性能,包括吞吐量、能量消耗、延迟、分组投递率和网络寿命。我们使用设备认证、节能聚类、基于圆形的隐马尔可夫模型(C-HMM)的环境监测、Awad 的基于熵的十重交叉熵验证(TCEV)的数据验证以及 Twine-LiteNet 加密的数据保密性等技术来实现这些改进。我们使用搜索和救援优化算法(SRO)进行最佳路由选择,并将加密数据安全地存储在云服务器中。通过使用 ns-3 进行广泛的网络模拟,我们的方法与以前的工作相比,在指定的性能指标方面有了显著的提高。具体来说,我们观察到吞吐量增加了 20%,分组丢失率(PDR)降低了 15%,网络寿命提高了 35%,能量消耗和延迟降低了 10%。这些发现强调了我们的方法在增强物联网网络互操作性和保护方面的有效性,促进了改善的患者护理和诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3355/10490659/b4ccb8321d8c/sensors-23-07474-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验