Suppr超能文献

HCAP:用于保障医疗应用安全的混合网络攻击预测模型。

HCAP: Hybrid cyber attack prediction model for securing healthcare applications.

作者信息

Ali Mohanad Faeq, Mohmood Mohammed Shakir, Shukur Ban Salman, Bacarra Rex, Alsayaydeh Jamil Abedalrahim Jamil, Ibrahim Masrullizam Mat, Herawan Safarudin Gazali

机构信息

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia.

Scholarship and Cultural Relations Directorate, Ministry of Higher Education and Scientific Research, Baghdad, Iraq.

出版信息

PLoS One. 2025 May 12;20(5):e0321941. doi: 10.1371/journal.pone.0321941. eCollection 2025.

Abstract

The rapid development and integration of interconnected healthcare devices and communication networks within the Internet of Medical Things (IoMT) have significantly enhanced healthcare services. However, this growth has also introduced new vulnerabilities, increasing the risk of cybersecurity attacks. These attacks threaten the confidentiality, integrity, and availability of sensitive healthcare data, raising concerns about the reliability of IoMT infrastructure. Addressing these challenges requires advanced cybersecurity measures to protect the dynamic IoMT ecosystem from evolving threats. This research focuses on enhancing cyberattack prediction and prevention in IoMT environments through innovative Machine-learning techniques to improve healthcare data security and resilience. However, the existing model's efficiency depends on the diversity of data, which leads to computational complexity issues. In addition, the conventional model faces overfitting issues in training data, which causes prediction inaccuracies. Thus, the research introduces the hybridized cyber attack prediction model (HCAP) and analyzes various IoMT data source information to address the limitations of dataset availability issues. The gathered information is processed with the help of Principal Component-Recursive Feature Elimination (PC-RFE), which eliminates the irrelevant features. The extracted features are fed into the lion-optimization technique to fine-tune the hyperparameters of the recurrent neural networks, enhancing the model's ability to efficiently predict cybersecurity threats with a maximum recognition rate in IoMT environments. The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. The results demonstrated that the proposed HCAP model achieved 98% accuracy in detecting cyberattacks and outperformed existing models, reducing the false positive rate by 25%. The false negative rate by 20% and a 30% improvement in computational efficiency enhances the reliability of IoMT threat detection in healthcare applications.

摘要

互联医疗设备和通信网络在医疗物联网(IoMT)中的快速发展与集成显著提升了医疗服务水平。然而,这种增长也带来了新的漏洞,增加了网络安全攻击的风险。这些攻击威胁到敏感医疗数据的保密性、完整性和可用性,引发了对IoMT基础设施可靠性的担忧。应对这些挑战需要先进的网络安全措施,以保护动态的IoMT生态系统免受不断演变的威胁。本研究致力于通过创新的机器学习技术增强IoMT环境中的网络攻击预测与预防,以提高医疗数据的安全性和恢复能力。然而,现有模型的效率取决于数据的多样性,这导致了计算复杂性问题。此外,传统模型在训练数据中面临过拟合问题,从而导致预测不准确。因此,该研究引入了混合网络攻击预测模型(HCAP),并分析各种IoMT数据源信息,以解决数据集可用性问题的局限性。收集到的信息借助主成分递归特征消除(PC-RFE)进行处理,该方法可消除无关特征。提取的特征被输入到狮子优化技术中,以微调递归神经网络的超参数,增强模型在IoMT环境中以最高识别率有效预测网络安全威胁的能力。递归网络,特别是长短期记忆(LSTM)网络,处理来自医疗设备的数据,识别随着时间推移表明潜在网络攻击的异常模式。所创建的系统使用Python实现,并使用包括误报率和漏报率、准确率、精确率、召回率和计算效率在内的各种指标进行评估。结果表明,所提出的HCAP模型在检测网络攻击方面达到了98%的准确率,优于现有模型,将误报率降低了25%。漏报率降低了20%,计算效率提高了30%,增强了医疗应用中IoMT威胁检测的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d29d/12068735/0733fd6bfb15/pone.0321941.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验