Suppr超能文献

导电原子力显微镜中的条纹噪声去除

Stripe noise removal in conductive atomic force microscopy.

作者信息

Li Mian, Rieck Jan, Noheda Beatriz, Roerdink Jos B T M, Wilkinson Michael H F

机构信息

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands.

Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.

出版信息

Sci Rep. 2024 Feb 16;14(1):3931. doi: 10.1038/s41598-024-54094-w.

Abstract

Conductive atomic force microscopy (c-AFM) can provide simultaneous maps of the topography and electrical current flow through materials with high spatial resolution and it is playing an increasingly important role in the characterization of novel materials that are being investigated for novel memory devices. However, noise in the form of stripe features often appear in c-AFM images, challenging the quantitative analysis of conduction or topographical information. To remove stripe noise without losing interesting information, as many as sixteen destriping methods are investigated in this paper, including three additional models that we propose based on the stripes characteristics, and thirteen state-of-the-art destriping methods. We have also designed a gradient stripe noise model and obtained a ground truth dataset consisting of 800 images, generated by rotating and cropping a clean image, and created a noisy image dataset by adding random intensities of simulated noise to the ground truth dataset. In addition to comparing the results of the stripe noise removal visually, we performed a quantitative image quality comparison using simulated datasets and 100 images with very different strengths of simulated noise. All results show that the Low-Rank Recovery method has the best performance and robustness for removing gradient stripe noise without losing useful information. Furthermore, a detailed performance comparison of Polynomial fitting and Low-Rank Recovery at different levels of real noise is presented.

摘要

导电原子力显微镜(c-AFM)能够以高空间分辨率同时提供材料的形貌图和电流分布图,在用于新型存储器件的新型材料表征中发挥着越来越重要的作用。然而,条纹特征形式的噪声经常出现在c-AFM图像中,这对传导或形貌信息的定量分析提出了挑战。为了在不丢失感兴趣信息的情况下去除条纹噪声,本文研究了多达16种去条纹方法,包括我们基于条纹特征提出的三种额外模型以及13种最先进的去条纹方法。我们还设计了一个梯度条纹噪声模型,并通过旋转和裁剪一幅干净图像生成了一个由800幅图像组成的真实数据集,然后通过向真实数据集添加随机强度的模拟噪声创建了一个噪声图像数据集。除了直观地比较条纹噪声去除的结果外,我们还使用模拟数据集和100幅具有非常不同强度模拟噪声的图像进行了定量图像质量比较。所有结果表明,低秩恢复方法在去除梯度条纹噪声且不丢失有用信息方面具有最佳性能和鲁棒性。此外,还给出了多项式拟合和低秩恢复在不同真实噪声水平下的详细性能比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42e9/10873331/75a7ceb482e8/41598_2024_54094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验