Suppr超能文献

基于深度学习神经网络和启发式算法模型的堆叠集成,对中国 1958 年至 2021 年无气象数据的实际蒸散量进行预测。

Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021.

机构信息

College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Zhejiang Ecological Civilization Academy, Anji, 313300, Zhejiang, China; Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.

Department of Civil Engineering, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, 721302, West Bengal, India.

出版信息

J Environ Manage. 2023 Nov 1;345:118697. doi: 10.1016/j.jenvman.2023.118697. Epub 2023 Sep 7.

Abstract

As a non-linear phenomenon that varies along with agro-climatic conditions alongside many other factors, Evapotranspiration (ET) process represents a complexity when be assessed especially if there is a data scarcity in the weather data. However, even under such a data scarcity, the accurate estimates of ET values remain necessary for precise irrigation. So, the present study aims to: i) evaluate the performance of six hybrid machine learning (ML) models in estimating the monthly actual ET values under different agro-climatic conditions in China for seven provinces (Shandong, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, and Henan), and ii) select the best-developed model based on statistical metrics and reduce errors between predicted and actual ET (AET) values. AET datasets were divided into 78% for model training (from 1958 to 2007) and the remaining was used for testing (from 2008 to 2021). Deep Neural Networks (DNN) was used as a standalone model at first then the stacking method was applied to integrate DNN with data-driven models such as Additive regression (AR), Random Forest (RF), Random Subspace (RSS), M5 Burned Tree (M5P) and Reduced Error Purning Tree (REPTree). Partial Auto-Correlation Function (PACF) was used for selection of the best lags inputs to the developed models. Results have revealed that DNN-based hybrid models held better performance than non-hybrid DNN models, such that the DNN-RF algorithm outperformed others during both training and testing stages, followed by DNN-RSS. This model has acquired the best values of every statistical measure [MAE (10.8, 12.9), RMSE (15.6, 17.4), RAE (31.9%, 41.4%), and RRSE (39.3%, 47.2%)] for training and testing, respectively. In contrast, the DNN model held the worst performance [MAE (14.9, 13.7), RMSE (20.1, 18.2), RAE (43.9%, 43.7%), and RRSE (50.6%, 49.3%)], for training and testing, respectively. Results from the study presented have revealed the capability of DNN-based hybrid models for long-term predictions of the AET values. Moreover, the DNN-RF model has been suggested as the most suitable model to improve future investigation for AET predictions, which could benefit the enhancement of the irrigation process and increase crop yield.

摘要

作为一种随农业气候条件和许多其他因素而变化的非线性现象,蒸散(ET)过程在评估时具有复杂性,尤其是在气象数据匮乏的情况下。然而,即使在这种数据匮乏的情况下,准确估计 ET 值对于精确灌溉仍然是必要的。因此,本研究旨在:i)评估六种混合机器学习(ML)模型在估计中国七个省份(山东、江苏、浙江、福建、江西、湖北和河南)不同农业气候条件下的月实际 ET 值的性能,ii)根据统计指标选择最佳开发模型,并减少预测与实际 ET(AET)值之间的误差。AET 数据集分为 78%用于模型训练(1958 年至 2007 年),其余用于测试(2008 年至 2021 年)。首先使用深度神经网络(DNN)作为独立模型,然后应用堆叠方法将 DNN 与数据驱动模型(如加法回归(AR)、随机森林(RF)、随机子空间(RSS)、M5 燃烧树(M5P)和简化错误燃烧树(REPTree)集成。偏自相关函数(PACF)用于选择开发模型的最佳滞后输入。结果表明,基于 DNN 的混合模型比非混合 DNN 模型具有更好的性能,例如,在训练和测试阶段,DNN-RF 算法都优于其他算法,其次是 DNN-RSS。该模型在训练和测试阶段分别获得了每个统计度量的最佳值[MAE(10.8、12.9)、RMSE(15.6、17.4)、RAE(31.9%、41.4%)和 RRSE(39.3%、47.2%)]。相比之下,DNN 模型的表现最差[MAE(14.9、13.7)、RMSE(20.1、18.2)、RAE(43.9%、43.7%)和 RRSE(50.6%、49.3%)],用于训练和测试,分别。该研究的结果表明,基于 DNN 的混合模型具有长期预测 AET 值的能力。此外,建议使用 DNN-RF 模型作为改进未来 AET 预测研究的最合适模型,这有助于提高灌溉过程和增加作物产量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验