Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Department of Agricultural and Food Engineering, IIT Kharagpur, Kharagpur, West Bengal, 721302, India.
J Environ Manage. 2024 Nov;370:122535. doi: 10.1016/j.jenvman.2024.122535. Epub 2024 Sep 26.
Groundwater in coastal regions is threatened by saltwater intrusion (SWI). Beach nourishment is used in this study to manage SWI in the Biscayne aquifer, Florida, USA, using a 3D SEAWAT model nourishment considering the future sea level rise and freshwater over-pumping. The present study focused on the development and comparative evaluation of seven machine learning (ML) models, i.e., additive regression (AR), support vector machine (SVM), reduced error pruning tree (REPTree), Bagging, random subspace (RSS), random forest (RF), artificial neural network (ANN) to predict the SWI using beach nourishment. The performance of ML models was assessed using statistical indicators such as coefficient of determination (R), Nash-Sutcliffe efficiency (NSE), means absolute error (MAE), root mean square error (RMSE), and root relative squared error (RRSE) along with the graphical inspection (i.e., Radar and Taylor diagram). The findings indicate that applying SVM, Bagging, RSS, and RF models has great potential in predicting the SWI values with limited data in the study area. The RF model emerged as the best fit and closely matched observed values; it obtained R (0.999), NSE (0.999), MAE (0.324), RRSE (0.209), and RMSE (0.416) during the testing process. The present study concludes that the RF model could be a valuable tool for accurate predictions of SWI and effective water management in coastal areas.
沿海地区的地下水受到海水入侵(SWI)的威胁。本研究在美国佛罗里达州比斯坎含水层中使用海滩补给来管理海水入侵,考虑到未来海平面上升和淡水过度抽取,采用了三维 SEAWAT 模型进行补给。本研究重点开发和比较评价了七种机器学习(ML)模型,即加法回归(AR)、支持向量机(SVM)、简化误差修剪树(REPTree)、装袋、随机子空间(RSS)、随机森林(RF)、人工神经网络(ANN),用于使用海滩补给来预测海水入侵。通过统计指标,如决定系数(R)、纳什-苏特克里夫效率(NSE)、平均绝对误差(MAE)、均方根误差(RMSE)和根相对平方误差(RRSE)以及图形检查(即雷达图和泰勒图)评估 ML 模型的性能。研究结果表明,在研究区域数据有限的情况下,应用 SVM、装袋、RSS 和 RF 模型在预测海水入侵值方面具有很大的潜力。RF 模型是最佳拟合模型,与观测值非常吻合;在测试过程中,它获得了 R(0.999)、NSE(0.999)、MAE(0.324)、RRSE(0.209)和 RMSE(0.416)。本研究得出结论,RF 模型可以成为准确预测海水入侵和沿海地区有效水资源管理的有用工具。