State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing, 400044, China.
Adv Mater. 2023 Dec;35(52):e2304920. doi: 10.1002/adma.202304920. Epub 2023 Nov 20.
To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na accumulation to expedite ATPase transport for powering intracellular CO conversion. Remarkably, the self-assembled M.barkeri-Co-N @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m day , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.
为了显著提高生物电化学 CO 转化速率并揭示非生物电极与附着微生物之间的相关性,将原子纳米粒子桥 Co-N@Co-NP 集成到金属有机骨架衍生的纳米片中,与 Methanosarcina barkeri(M. barkeri)的模型产甲烷菌整合在一起。Co-N 中的 N 和细胞色素 b(Cytb)成员蛋白中的 Fe 中的直接键合激活了快速的直接电子转移路径,而 Co 纳米颗粒通过降低 N 的 p 带中心和 Fe 的 d 带中心之间的能隙进一步加强了这种键合。Co 纳米颗粒的这种多轨道调谐操作还通过使电子流直接流向加氢位点来增强辅酶 F420 介导的电子转移。特别是,基于 Co-N@Co-NP 桥的纳米片电极的增加的表面电场促进界面 Na 积累,以加速 ATPase 运输,从而为细胞内 CO 转化提供动力。值得注意的是,自组装的 M.barkeri-Co-N@Co-NP 生物杂种实现了 3860mmol m day 的高甲烷产率,大大优于其他报道的生物杂种系统。这项工作全面考察了生物-非生物能量转移,这可能为高效的生物电化学系统设计提供指导原则。