Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
Nat Commun. 2022 Nov 3;13(1):6612. doi: 10.1038/s41467-022-34423-1.
Integration of methanogens with semiconductors is an effective approach to sustainable solar-driven methanogenesis. However, the H production rate by semiconductors largely exceeds that of methanogen metabolism, resulting in abundant H as side product. Here, we report that binary metallic active sites (namely, NiCu alloys) are incorporated into the interface between CdS semiconductors and Methanosarcina barkeri. The self-assembled Methanosarcina barkeri-NiCu@CdS exhibits nearly 100% CH selectivity with a quantum yield of 12.41 ± 0.16% under light illumination, which not only exceeds the reported biotic-abiotic hybrid systems but also is superior to most photocatalytic systems. Further investigation reveal that the Ni-Cu-Cu hollow sites in NiCu alloys can directly supply hydrogen atoms and electrons through photocatalysis to the Methanosarcina barkeri for methanogenesis via both extracellular and intracellular hydrogen cycles, effectively turning down the H production. This work provides important insights into the biotic-abiotic hybrid interface, and offers an avenue for engineering the methanogenesis process.
将产甲烷菌与半导体结合是实现可持续太阳能驱动产甲烷作用的有效方法。然而,半导体产生的 H 量大大超过产甲烷菌代谢的速度,导致大量 H 作为副产物产生。在这里,我们报告了二元金属活性位点(即 NiCu 合金)被掺入 CdS 半导体和 Methanosarcina barkeri 之间的界面中。自组装的 Methanosarcina barkeri-NiCu@CdS 在光照下表现出近 100%的 CH 选择性,量子产率为 12.41 ± 0.16%,不仅超过了报道的生物-非生物杂化系统,而且优于大多数光催化系统。进一步的研究表明,NiCu 合金中的 Ni-Cu-Cu 空心位通过光催化可以直接向 Methanosarcina barkeri 提供氢原子和电子,通过胞外和胞内氢循环进行甲烷生成,有效地减少了 H 的产生。这项工作为生物-非生物杂化界面提供了重要的见解,并为工程化产甲烷过程提供了途径。