Suppr超能文献

基于预处理 MRI 影像组学特征预测接受伽玛刀放射外科治疗的黑色素瘤脑转移瘤中的 BRAF 突变。

Predicting the BRAF mutation with pretreatment MRI radiomics features for melanoma brain metastases receiving Gamma Knife radiosurgery.

机构信息

Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.

RADformation, New York, NY, USA.

出版信息

Clin Radiol. 2023 Dec;78(12):e934-e940. doi: 10.1016/j.crad.2023.08.012. Epub 2023 Sep 1.

Abstract

AIM

To develop a model using radiomics features extracted from magnetic resonance imaging (MRI) images of Gamma Knife radiosurgery (GKRS) to predict the BRAF mutation in patients with melanoma brain metastases (MBM).

MATERIALS AND METHODS

Data of 220 tumours were classified into two groups. One was a group whose BRAF mutation was identified, and the other group whose BRAF mutation was not identified. We extracted 1,962 radiomics features from gadolinium contrast-enhanced T1-weighted MRI treatment-planning images. Synthetic Minority Over-sampling TEchnique (SMOTE) was performed to address the unbalanced data-related issues. A single-layer neural network (NN) was used to build predictive models with radiomics features. The sensitivity, specificity, accuracy, and the area under the curve (AUC) were evaluated to assess the model performance.

RESULTS

The prediction performance for the final evaluation without the SMOTE had an accuracy of 77.14%, a specificity of 82.44%, a sensitivity of 81.85%, and an AUC of 0.79. The application of SMOTE improved the prediction model to an accuracy of 83.1%, a specificity of 87.07%, a sensitivity of 78.82%, and an AUC of 0.82.

CONCLUSION

The current study showed the feasibility of generating a highly accurate NN model for the BRAF mutation prediction. The prediction performance improved with SMOTE. The model assists physicians to obtain more accurate expectations of the treatment outcome without a genetic test.

摘要

目的

利用磁共振成像(MRI)伽玛刀放射外科(GKRS)图像提取的放射组学特征,开发一种模型,以预测黑色素瘤脑转移(MBM)患者的 BRAF 突变。

材料与方法

对 220 个肿瘤的数据进行分类,分为 BRAF 突变确定组和 BRAF 突变未确定组。我们从钆增强 T1 加权 MRI 治疗计划图像中提取了 1962 个放射组学特征。采用合成少数过采样技术(SMOTE)解决数据不平衡相关问题。使用单层神经网络(NN)基于放射组学特征构建预测模型。评估敏感性、特异性、准确性和曲线下面积(AUC)以评估模型性能。

结果

未采用 SMOTE 的最终评估的预测性能准确率为 77.14%,特异性为 82.44%,敏感性为 81.85%,AUC 为 0.79。SMOTE 的应用将预测模型提高到准确率为 83.1%,特异性为 87.07%,敏感性为 78.82%,AUC 为 0.82。

结论

本研究表明生成用于 BRAF 突变预测的高度准确 NN 模型是可行的。预测性能通过 SMOTE 得到改善。该模型帮助医生在无需基因检测的情况下,更准确地预测治疗结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验