Suppr超能文献

基于机器学习的剪切最优粘合剂微结构及其实验验证

Machine Learning-Based Shear Optimal Adhesive Microstructures with Experimental Validation.

作者信息

Dayan Cem Balda, Son Donghoon, Aghakhani Amirreza, Wu Yingdan, Demir Sinan Ozgun, Sitti Metin

机构信息

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.

Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland.

出版信息

Small. 2024 Jan;20(2):e2304437. doi: 10.1002/smll.202304437. Epub 2023 Sep 10.

Abstract

Bioinspired fibrillar structures are promising for a wide range of disruptive adhesive applications. Especially micro/nanofibrillar structures on gecko toes can have strong and controllable adhesion and shear on a wide range of surfaces with residual-free, repeatable, self-cleaning, and other unique features. Synthetic dry fibrillar adhesives inspired by such biological fibrils are optimized in different aspects to increase their performance. Previous fibril designs for shear optimization are limited by predefined standard shapes in a narrow range primarily based on human intuition, which restricts their maximum performance. This study combines the machine learning-based optimization and finite-element-method-based shear mechanics simulations to find shear-optimized fibril designs automatically. In addition, fabrication limitations are integrated into the simulations to have more experimentally relevant results. The computationally discovered shear-optimized structures are fabricated, experimentally validated, and compared with the simulations. The results show that the computed shear-optimized fibrils perform better than the predefined standard fibril designs. This design optimization method can be used in future real-world shear-based gripping or nonslip surface applications, such as robotic pick-and-place grippers, climbing robots, gloves, electronic devices, and medical and wearable devices.

摘要

受生物启发的纤维状结构在广泛的突破性粘附应用中具有广阔前景。特别是壁虎脚趾上的微/纳米纤维状结构,在各种表面上能够具有强大且可控的粘附力和剪切力,并具有无残留、可重复、自清洁等独特特性。受此类生物纤维启发的合成干式纤维状粘合剂在不同方面进行了优化以提高其性能。先前用于剪切优化的纤维设计主要基于人类直觉,在狭窄范围内受预定义标准形状的限制,这限制了它们的最大性能。本研究结合基于机器学习的优化和基于有限元方法的剪切力学模拟,以自动找到剪切优化的纤维设计。此外,将制造限制纳入模拟以获得更具实验相关性的结果。对通过计算发现的剪切优化结构进行制造、实验验证,并与模拟结果进行比较。结果表明,计算得出的剪切优化纤维比预定义的标准纤维设计表现更好。这种设计优化方法可用于未来基于剪切的实际抓取或防滑表面应用,如机器人取放夹具、攀爬机器人、手套、电子设备以及医疗和可穿戴设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验