Suppr超能文献

基于机器学习和实验验证的最优纤维蛋白原设计。

Machine Learning-Based and Experimentally Validated Optimal Adhesive Fibril Designs.

机构信息

School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea.

Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.

出版信息

Small. 2021 Oct;17(39):e2102867. doi: 10.1002/smll.202102867. Epub 2021 Aug 19.

Abstract

Setae, fibrils located on a gecko's feet, have been an inspiration of synthetic dry microfibrillar adhesives in the last two decades for a wide range of applications due to unique properties: residue-free, repeatable, tunable, controllable and silent adhesion; self-cleaning; and breathability. However, designing dry fibrillar adhesives is limited by a template-based-design-approach using a pre-determined bioinspired T- or wedge-shaped mushroom tip. Here, a machine learning-based computational approach to optimize designs of adhesive fibrils is shown, exploring a much broader design space. A combination of Bayesian optimization and finite element methods creates novel optimal designs of adhesive fibrils, which are fabricated by two-photon-polymerization-based 3D microprinting and double-molding-based replication out of polydimethylsiloxane. Such optimal elastomeric fibril designs outperform previously proposed designs by maximum 77% in the experiments of dry adhesion performance on smooth surfaces. Furthermore, finite-element-analyses reveal that the adhesion of the fibrils is sensitive to the 3D fibril stem shape, tensile deformation, and fibril microfabrication limits, which contrast with the previous assumptions that mostly neglect the deformation of the fibril tip and stem, and focus only on the fibril tip geometry. The proposed computational fibril design could help design future optimal fibrils with less help from human intuition.

摘要

刚毛是壁虎足部的纤维,由于其独特的性能,在过去二十年中,一直是合成干燥微纤维粘合剂的灵感来源,这些性能包括:无残留、可重复、可调、可控和静音黏附;自清洁;透气。然而,设计干燥纤维状粘合剂受到基于模板的设计方法的限制,该方法使用预先确定的仿生 T 形或楔形蘑菇尖端。在这里,展示了一种基于机器学习的计算方法来优化粘性纤维的设计,探索了更广泛的设计空间。贝叶斯优化和有限元方法的组合为粘性纤维创建了新颖的最佳设计,这些设计是通过双光子聚合的 3D 微打印和基于双模塑的复制用聚二甲基硅氧烷制成的。在光滑表面上的干燥粘附性能实验中,这种最佳弹性纤维设计比以前提出的设计最多提高了 77%。此外,有限元分析表明,纤维的粘附对纤维的 3D 纤维干形状、拉伸变形和纤维微制造限制很敏感,这与之前的假设形成对比,之前的假设主要忽略了纤维尖端和纤维干的变形,并且仅关注纤维尖端的几何形状。所提出的计算纤维设计可以帮助设计未来具有较少人为直觉帮助的最佳纤维。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验