Suppr超能文献

基于机器学习的纤维状粘合剂优化设计

Machine learning-based optimal design of fibrillar adhesives.

作者信息

Shojaeifard Mohammad, Ferraresso Matteo, Lucantonio Alessandro, Bacca Mattia

机构信息

Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T1Z4, Canada.

Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark.

出版信息

J R Soc Interface. 2025 Feb;22(223):20240636. doi: 10.1098/rsif.2024.0636. Epub 2025 Feb 26.

Abstract

Fibrillar adhesion, observed in animals like beetles, spiders and geckos, relies on nanoscopic or microscopic fibrils to enhance surface adhesion via 'contact splitting'. This concept has inspired engineering applications across robotics, transportation and medicine. Recent studies suggest that functional grading of fibril properties can improve adhesion, but this is a complex design challenge that has only been explored in simplified geometries. While machine learning (ML) has gained traction in adhesive design, no previous attempts have targeted fibril-array scale optimization. In this study, we propose an ML-based tool that optimizes the distribution of fibril compliance to maximize adhesive strength. Our tool, featuring two neural networks (NNs), recovers previous design results for simple geometries and introduces novel solutions for complex configurations. The predictor NN estimates adhesive strength based on random compliance distributions, while the designer NN optimizes compliance distribution to achieve maximum strength using gradient-based optimization. This method significantly reduces test error and accelerates the optimization process, offering a high-performance solution for designing fibrillar adhesives and micro-architected materials aimed at fracture resistance by achieving equal load sharing.

摘要

在甲虫、蜘蛛和壁虎等动物身上观察到的纤维状粘附,依靠纳米级或微观级的纤维,通过“接触分裂”来增强表面粘附力。这一概念启发了机器人技术、交通运输和医学等领域的工程应用。最近的研究表明,纤维特性的功能分级可以提高粘附力,但这是一个复杂的设计挑战,目前仅在简化几何形状中进行过探索。虽然机器学习(ML)在粘合剂设计中已受到关注,但此前尚未有针对纤维阵列尺度优化的尝试。在本研究中,我们提出了一种基于机器学习的工具,该工具可优化纤维柔顺性分布,以实现粘附力最大化。我们的工具由两个神经网络(NN)组成,它能重现简单几何形状的先前设计结果,并为复杂结构引入新颖的解决方案。预测神经网络基于随机柔顺性分布估计粘附力,而设计神经网络使用基于梯度的优化方法来优化柔顺性分布,以实现最大强度。该方法显著降低了测试误差,加速了优化过程,通过实现均等的载荷分担,为设计纤维状粘合剂和旨在抗断裂的微结构材料提供了一种高性能解决方案。

相似文献

1
Machine learning-based optimal design of fibrillar adhesives.基于机器学习的纤维状粘合剂优化设计
J R Soc Interface. 2025 Feb;22(223):20240636. doi: 10.1098/rsif.2024.0636. Epub 2025 Feb 26.
10

本文引用的文献

6
Designing an Adhesive Pillar Shape with Deep Learning-Based Optimization.基于深度学习优化设计粘性柱状形状
ACS Appl Mater Interfaces. 2020 May 27;12(21):24458-24465. doi: 10.1021/acsami.0c04123. Epub 2020 May 14.
7
Dry double-sided tape for adhesion of wet tissues and devices.用于粘贴湿纸巾和设备的干式双面胶带。
Nature. 2019 Nov;575(7781):169-174. doi: 10.1038/s41586-019-1710-5. Epub 2019 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验