文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症免疫疗法:进展与瓶颈。

Cancer immunotherapies: advances and bottlenecks.

机构信息

Department of Urology, Peking University First Hospital, Beijing, China.

The Institution of Urology, Peking University, Beijing, China.

出版信息

Front Immunol. 2023 Aug 24;14:1212476. doi: 10.3389/fimmu.2023.1212476. eCollection 2023.


DOI:10.3389/fimmu.2023.1212476
PMID:37691932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10484345/
Abstract

Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.

摘要

免疫疗法开创了癌症治疗的新时代,癌症免疫疗法持续焕发生机。癌症免疫疗法的临床目标是激活宿主免疫系统,为恶性肿瘤提供被动或主动免疫。肿瘤浸润白细胞(TILs)在肿瘤微环境(TME)中发挥免疫调节作用,与肿瘤细胞的免疫逃逸密切相关,从而影响肿瘤的进展。几种癌症免疫疗法,包括免疫检查点抑制剂(ICIs)、癌症疫苗、过继细胞转移(ACT),已显示出巨大的疗效和潜力。在这篇综述中,我们将总结肿瘤免疫治疗的最新研究进展,包括免疫疗法的分子机制、临床效果和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/fcde60b5fd0a/fimmu-14-1212476-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/97c2cb740fdf/fimmu-14-1212476-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/4464ffd01d41/fimmu-14-1212476-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/0f3577fe587f/fimmu-14-1212476-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/fcde60b5fd0a/fimmu-14-1212476-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/97c2cb740fdf/fimmu-14-1212476-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/4464ffd01d41/fimmu-14-1212476-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/0f3577fe587f/fimmu-14-1212476-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10484345/fcde60b5fd0a/fimmu-14-1212476-g004.jpg

相似文献

[1]
Cancer immunotherapies: advances and bottlenecks.

Front Immunol. 2023

[2]
The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.

Cell Mol Immunol. 2020-8

[3]
Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.

Semin Cancer Biol. 2020-10

[4]
Impact of tumor microenvironment on adoptive T cell transfer activity.

Int Rev Cell Mol Biol. 2022

[5]
Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers.

J Immunother Cancer. 2018-7-3

[6]
Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy.

J Immunother Cancer. 2022-10

[7]
Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells.

Immunol Cell Biol. 2017-11-17

[8]
Cancer immunotherapy: accomplishments to date and future promise.

Ther Deliv. 2013-10

[9]
Immunotherapy in ovarian cancer.

Ann Oncol. 2017-11-1

[10]
An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy.

Cells. 2022-5-8

引用本文的文献

[1]
PD-1 and LAG-3 were optimal combination of immune checkpoints for predicting poor clinical outcomes of patients with ovarian cancer.

Front Immunol. 2025-8-14

[2]
Comprehensive analysis of MAGE-A10 in pan-cancer and its validation in gastric cancer.

Sci Rep. 2025-9-1

[3]
UBE2N as a novel prognostic and therapeutic biomarker of lung adenocarcinoma.

Front Immunol. 2025-8-11

[4]
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme.

Molecules. 2025-7-24

[5]
Vitamin D, Gut Microbiota, and Cancer Immunotherapy-A Potentially Effective Crosstalk.

Int J Mol Sci. 2025-7-22

[6]
Mechanistic insights into the role of RNA demethylase ALKBH5 in malignant tumor therapy.

J Transl Med. 2025-8-13

[7]
Engineered anti-cancer nanomedicine for synergistic cuproptosis-immunotherapy.

Mater Today Bio. 2025-7-29

[8]
Effect of acupuncture and moxibustion on the immune function of patients with malignant tumors: a systematic review and meta-analysis.

Front Immunol. 2025-7-25

[9]
Immune surveillance as a pharmacological target in the early stages of cancer.

Front Mol Biosci. 2025-7-25

[10]
Artemisiae Annuae Herba: from anti-malarial legacy to emerging anti-cancer potential.

Theranostics. 2025-6-20

本文引用的文献

[1]
PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance.

Sci Adv. 2023-5-26

[2]
Synthetic cytokine circuits that drive T cells into immune-excluded tumors.

Science. 2022-12-16

[3]
CAR-Macrophages and CAR-T Cells Synergistically Kill Tumor Cells In Vitro.

Cells. 2022-11-21

[4]
Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect.

Nat Cancer. 2022-11

[5]
Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling.

Nat Cancer. 2022-11

[6]
Neoadjuvant relatlimab and nivolumab in resectable melanoma.

Nature. 2022-11

[7]
Clinical advances and ongoing trials on mRNA vaccines for cancer treatment.

Lancet Oncol. 2022-10

[8]
Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation.

Nat Immunol. 2022-9

[9]
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study.

Lancet Oncol. 2022-6

[10]
Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors.

Sci Transl Med. 2022-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索