Paul Sattwikesh, Schrobback Karsten, Tran Phong Anh, Meinert Christoph, Davern Jordan William, Weekes Angus, Nedunchezhiyan Udhaya, Klein Travis Jacob
School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia.
Gelomics Pty Ltd., Brisbane, QLD 4059, Australia.
APL Bioeng. 2023 Sep 8;7(3):036114. doi: 10.1063/5.0160472. eCollection 2023 Sep.
Untreated osteochondral defects are a leading cause of osteoarthritis, a condition that places a heavy burden on both patients and orthopedic surgeons. Although tissue engineering has shown promise for creating mechanically similar cartilage-like constructs, their integration with cartilage remains elusive. Therefore, a formulation of biodegradable, biocompatible biomaterial with sufficient mechanical and adhesive properties for cartilage repair is required. To accomplish this, we prepared biocompatible, photo-curable, mechanically robust, and highly adhesive GelMA-glycol chitosan (GelMA-GC) hydrogels. GelMA-GC hydrogels had a modulus of 283 kPa and provided a biocompatible environment (>70% viability of embedded chondrocytes) in long-term culture within a bovine cartilage ring. The adhesive strength of bovine chondrocyte-laden GelMA-GC hydrogel to bovine cartilage increased from 38 to 52 kPa over four weeks of culture. Moreover, intermittent uniaxial mechanical stimulation enhanced the adhesive strength to ∼60 kPa, indicating that the cartilage-hydrogel integration could remain secure and functional under dynamic loading conditions. Furthermore, gene expression data and immunofluorescence staining revealed the capacity of chondrocytes in GelMA-GC hydrogel to synthesize chondrogenic markers (COL2A1 and ACAN), suggesting the potential for tissue regeneration. The promising results of this work motivate further exploration of the potential of photo-curable GelMA-GC bioadhesive hydrogels for cartilage repair and regeneration.
未经治疗的骨软骨缺损是骨关节炎的主要原因,这种疾病给患者和骨科医生都带来了沉重负担。尽管组织工程在制造机械性能类似软骨的构建体方面显示出了前景,但它们与软骨的整合仍然难以实现。因此,需要一种具有足够机械性能和粘附性能的可生物降解、生物相容性的生物材料配方来修复软骨。为了实现这一目标,我们制备了生物相容性好、可光固化、机械性能强且粘附力高的甲基丙烯酸缩水甘油酯-壳聚糖(GelMA-GC)水凝胶。GelMA-GC水凝胶的模量为283 kPa,并在牛软骨环中长期培养时提供了生物相容性环境(包埋软骨细胞的存活率>70%)。负载牛软骨细胞的GelMA-GC水凝胶与牛软骨的粘附强度在四周的培养过程中从38 kPa增加到了52 kPa。此外,间歇性单轴机械刺激将粘附强度提高到了约60 kPa,这表明在动态加载条件下,软骨-水凝胶的整合能够保持稳固并发挥功能。此外,基因表达数据和免疫荧光染色显示GelMA-GC水凝胶中的软骨细胞具有合成软骨生成标记物(COL2A1和ACAN)的能力,这表明其具有组织再生的潜力。这项工作取得的有前景的结果促使人们进一步探索可光固化的GelMA-GC生物粘附水凝胶在软骨修复和再生方面的潜力。