Choi Alex S, Jenkins-Lane Laura M, Barton Wade, Kumari Asha, Lancaster Carly, Raulerson Calen, Ji Hao, Altomare Diego, Starr Mark D, Whitaker Regina, Phaeton Rebecca, Arend Rebecca, Shtutman Michael, Nixon Andrew B, Hempel Nadine, Lee Nam Y, Mythreye Karthikeyan
bioRxiv. 2023 Aug 29:2023.08.29.555364. doi: 10.1101/2023.08.29.555364.
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
在诸如癌症等病理状况下,异常的转化生长因子-β(TGF-β)信号传导会产生深远的肿瘤内在和外在影响。针对这一关键信号通路的深入临床研究正在进行。这些干预措施成功的关键在于确定能决定性调节TGF-β反应的因素。β聚糖/III型TGF-β受体(TβRIII)是TGF-β超家族已确定的共受体,已知其可直接结合TGF-β1-3和抑制素A/B。虽然β聚糖可以与膜结合,但它也可以经历胞外域裂解以产生可溶性β聚糖,后者可以隔离其配体。β聚糖的细胞外域会经历硫酸乙酰肝素和硫酸软骨素糖胺聚糖修饰,将β聚糖转化为蛋白聚糖。在此我们报告了一个意外发现,即硫酸乙酰肝素修饰对于β聚糖的胞外域脱落至关重要。在没有这种修饰的情况下,β聚糖不会脱落。这种脱落对于β聚糖抑制TGF-β信号传导以及细胞对外源TGF-β配体的反应能力而言是不可或缺的。通过无偏向转录组学,我们确定金属蛋白酶组织抑制因子3(TIMP3)是β聚糖脱落从而也是TGF-β信号传导的关键调节因子。我们的结果具有重要的临床意义,因为修饰后的β聚糖存在于卵巢癌患者的腹水中,并且可以作为预测患者预后和TGF-β信号反应的标志物。这些研究首次证明了β聚糖的糖胺聚糖修饰对于其脱落以及对TGF-β信号反应的影响具有独特的依赖性。TGF-β受体的失调脱落对于决定TGF-β的反应和可用性起着至关重要的作用,这对于预后预测和理解TGF-β信号动态至关重要。