Suppr超能文献

通过综合计算方法对改变NKX2-5结合的心血管疾病相关变异进行优先级排序。

Prioritizing Cardiovascular Disease-Associated Variants Altering NKX2-5 Binding through an Integrative Computational Approach.

作者信息

Peña-Martínez Edwin G, Pomales-Matos Diego A, Rivera-Madera Alejandro, Messon-Bird Jean L, Medina-Feliciano Joshua G, Sanabria-Alberto Leandro, Barreiro-Rosario Adriana C, Rodriguez-Rios Jessica M, Rodríguez-Martínez José A

机构信息

University of Puerto Rico-Río Piedras Campus.

University of Puerto Rico-Cayey Campus.

出版信息

medRxiv. 2023 Sep 2:2023.09.01.23294951. doi: 10.1101/2023.09.01.23294951.

Abstract

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are heavily influenced by genetic factors. Genome-wide association studies (GWAS) have mapped > 90% of CVD-associated variants within the non-coding genome, which can alter the function of regulatory proteins, like transcription factors (TFs). However, due to the overwhelming number of GWAS single nucleotide polymorphisms (SNPs) (>500,000), prioritizing variants for in vitro analysis remains challenging. In this work, we implemented a computational approach that considers support vector machine (SVM)-based TF binding site classification and cardiac expression quantitative trait loci (eQTL) analysis to identify and prioritize potential CVD-causing SNPs. We identified 1,535 CVD-associated SNPs that occur within human heart footprints/enhancers and 9,309 variants in linkage disequilibrium (LD) with differential gene expression profiles in cardiac tissue. Using hiPSC-CM ChIP-seq data from NKX2-5 and TBX5, two cardiac TFs essential for proper heart development, we trained a large-scale gapped k-mer SVM (LS-GKM-SVM) predictive model that can identify binding sites altered by CVD-associated SNPs. The computational predictive model was tested by scoring human heart footprints and enhancers in vitro through electrophoretic mobility shift assay (EMSA). Three variants (rs59310144, rs6715570, and rs61872084) were prioritized for in vitro validation based on their eQTL in cardiac tissue and LS-GKM-SVM prediction to alter NKX2-5 DNA binding. All three variants altered NKX2-5 DNA binding. In summary, we present a bioinformatic approach that considers tissue-specific eQTL analysis and SVM-based TF binding site classification to prioritize CVD-associated variants for in vitro experimental analysis.

摘要

心血管疾病(CVDs)是全球主要的死亡原因,并且受到遗传因素的严重影响。全基因组关联研究(GWAS)已经在非编码基因组中定位了超过90%的与CVD相关的变异,这些变异可以改变调节蛋白的功能,如转录因子(TFs)。然而,由于GWAS单核苷酸多态性(SNPs)数量众多(超过50万),对用于体外分析的变异进行优先级排序仍然具有挑战性。在这项工作中,我们实施了一种计算方法,该方法考虑基于支持向量机(SVM)的TF结合位点分类和心脏表达定量性状基因座(eQTL)分析,以识别潜在的导致CVD的SNPs并对其进行优先级排序。我们鉴定出1535个发生在人类心脏足迹/增强子内的与CVD相关的SNPs,以及9309个与心脏组织中差异基因表达谱处于连锁不平衡(LD)状态的变异。利用来自NKX2-5和TBX5(心脏正常发育所必需的两个心脏TFs)的人诱导多能干细胞来源的心肌细胞(hiPSC-CM)染色质免疫沉淀测序(ChIP-seq)数据,我们训练了一个大规模的带间隙k-mer SVM(LS-GKM-SVM)预测模型,该模型可以识别因与CVD相关的SNPs而改变的结合位点。通过电泳迁移率变动分析(EMSA)在体外对人类心脏足迹和增强子进行评分,对该计算预测模型进行了测试。基于它们在心脏组织中的eQTL以及LS-GKM-SVM预测会改变NKX2-5的DNA结合,三个变异(rs59310144、rs6715570和rs61872084)被优先用于体外验证。所有这三个变异都改变了NKX2-5的DNA结合。总之,我们提出了一种生物信息学方法,该方法考虑组织特异性eQTL分析和基于SVM的TF结合位点分类,以对用于体外实验分析的与CVD相关的变异进行优先级排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdfa/10491373/a867e03af916/nihpp-2023.09.01.23294951v1-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验