Feng Jia, Lu Chuan-Jun, Liu Ren-Rong
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
Acc Chem Res. 2023 Sep 19;56(18):2537-2554. doi: 10.1021/acs.accounts.3c00419. Epub 2023 Sep 11.
ConspectusAtropisomers bearing a rotation-restricted axis are common structural units in natural products, chiral ligands, and drugs; thus, the prevalence of asymmetric synthesis has increased in recent decades. Research into atropisomers featuring an N-containing axis (N-X atropisomers) remains in its infancy compared with the well-developed C-C atropisomer analogue. Notably, N-X atropisomers could offer divergent scaffolds, which are extremely important in bioactive molecules. The asymmetric synthesis of N-X atropisomers is recognized as both appealing and challenging. Recently, we devoted our efforts to the catalytic asymmetric synthesis of N-X atropisomers, benzimidazole-aryl N-C atropisomers, indole-aryl N-C atropisomers, hydrogen-bond-assisted N-C atropisomers, pyrrole-pyrrole N-N atropisomers, pyrrole-indole N-N atropisomers, and indole-indole N-N atropisomers. To obtain the N-C atropisomers, an asymmetric Buchwald-Hartwig reaction of amidines or enamines was employed. Using a Pd(OAc)/()-BINAP or Pd(OAc)/()-Xyl-BINAP catalyst system, benzimidazole-aryl N-C atropisomers and indole-aryl N-C atropisomers were readily obtained. To address the issue of the reduced stability of the diarylamine axis, a six-membered intramolecular N-H-O hydrogen bond was introduced into the N-C atropisomer scaffold. A tandem -arylation/oxidation process was used for the chiral phosphoric acid (CPA)-catalyzed asymmetric synthesis of -aryl quinone atropisomers. For N-N atropisomers, a copper-mediated asymmetric Friedel-Crafts alkylation/arylation reaction was developed. The desymmetrization process was completed successfully via a Cu(OTf)/chiral bisoxazoline or (CuOTf)·Tol/bis(phosphine) dioxide system, thereby achieving the first catalytic asymmetric synthesis of N/N bipyrrole atropisomers. Asymmetric Buchwald-Hartwig amination of enamines was utilized to provide N-N bisindole atropisomers with excellent stereogenic control. This was the first asymmetric synthesis of N-N atropisomers featuring a bisindole structural scaffold using the indole construction strategy. The asymmetric N-N heterobiaryl atropisomer synthesis was substantially facilitated using palladium-catalyzed transient directing group (TDG)-mediated C-H functionalization. Atropisomeric alkenylation, allylation, or alkynylation was accomplished using the Pd(OAc)/l--leucine system. Herein, we summarize our work on the palladium-, copper-, and CPA-catalyzed asymmetric syntheses of N-C and N-N atropisomers. Furthermore, the application of our work in the synthesis of bioactive molecule analogues and axially chiral ligands is demonstrated. Subsequently, the stability of the chiral N-containing axis is briefly discussed in terms of single crystals and obtained rotational barriers. Finally, an outlook on the asymmetric N-X atropisomer synthesis is provided.
综述
带有旋转受限轴的阻转异构体是天然产物、手性配体和药物中常见的结构单元;因此,近几十年来不对称合成的应用日益广泛。与已发展成熟的C-C阻转异构体类似物相比,对含氮轴的阻转异构体(N-X阻转异构体)的研究仍处于起步阶段。值得注意的是,N-X阻转异构体可以提供不同的骨架,这在生物活性分子中极为重要。N-X阻转异构体的不对称合成被认为既具有吸引力又具有挑战性。最近,我们致力于N-X阻转异构体、苯并咪唑-芳基N-C阻转异构体、吲哚-芳基N-C阻转异构体、氢键辅助的N-C阻转异构体、吡咯-吡咯N-N阻转异构体、吡咯-吲哚N-N阻转异构体和吲哚-吲哚N-N阻转异构体的催化不对称合成。为了获得N-C阻转异构体,采用了脒或烯胺的不对称Buchwald-Hartwig反应。使用Pd(OAc)₂/()-BINAP或Pd(OAc)₂/()-Xyl-BINAP催化体系,很容易得到苯并咪唑-芳基N-C阻转异构体和吲哚-芳基N-C阻转异构体。为了解决二芳基胺轴稳定性降低的问题,在N-C阻转异构体骨架中引入了一个六元分子内N-H-O氢键。串联芳基化/氧化过程用于手性磷酸(CPA)催化的芳基醌阻转异构体的不对称合成。对于N-N阻转异构体,开发了铜介导的不对称Friedel-Crafts烷基化/芳基化反应。通过Cu(OTf)₂/手性双恶唑啉或(CuOTf)₂·Tol/双(膦)二氧化物体系成功完成了去对称化过程,从而实现了N/N联吡咯阻转异构体的首次催化不对称合成。利用烯胺的不对称Buchwald-Hartwig胺化反应,以优异的立体控制提供了N-N双吲哚阻转异构体。这是首次使用吲哚构建策略对具有双吲哚结构骨架的N-N阻转异构体进行不对称合成。使用钯催化的瞬态导向基团(TDG)介导的C-H官能化大大促进了不对称N-N杂联芳基阻转异构体的合成。使用Pd(OAc)₂/l--亮氨酸体系完成了阻转异构的烯基化、烯丙基化或炔基化反应。在此,我们总结了我们在钯、铜和CPA催化的N-C和N-N阻转异构体不对称合成方面的工作。此外,还展示了我们的工作在生物活性分子类似物和轴向手性配体合成中的应用。随后,从单晶和获得的旋转势垒方面简要讨论了手性含氮轴的稳定性。最后,对不对称N-X阻转异构体的合成进行了展望。