Suppr超能文献

胶体相互作用中的重整化电荷与介电效应:未知边界条件下非线性泊松-玻尔兹曼方程的数值解

Renormalized charge and dielectric effects in colloidal interactions: a numerical solution of the nonlinear Poisson-Boltzmann equation for unknown boundary conditions.

作者信息

Schlaich Alexander, Tyagi Sandeep, Kesselheim Stefan, Sega Marcello, Holm Christian

机构信息

Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569, Stuttgart, Germany.

Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569, Stuttgart, Germany.

出版信息

Eur Phys J E Soft Matter. 2023 Sep 11;46(9):80. doi: 10.1140/epje/s10189-023-00334-2.

Abstract

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander's prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.

摘要

70多年前提出的德亚金-朗道-弗韦-奥弗贝克(DLVO)理论是胶体颗粒建模的一个标志。对于稀溶液中高电荷粒子,它通常由亚历山大法则(Alexander等人,《化学物理杂志》80:5776,1984)补充,以使用重整化电荷。在这里,我们使用一种有效的数值方案来求解具有未知边界条件的非线性泊松-玻尔兹曼(NPB)方程,解决了有限离子强度下两个带电胶体之间的相互作用问题,包括介电失配效应。我们的结果与Trizac及其同事对重整化电荷的解析预测(Aubouy等人,《物理学报A》36:5835,2003)完美匹配。此外,它们使我们能够重新解释Kreer等人(《物理评论E》74:021401,2006)之前的分子动力学(MD)模拟结果,使其现在与预期行为一致。我们还发现,只有当德拜层显著重叠时,极化的影响才变得重要。

相似文献

3
Renormalized jellium mean-field approximation for binary mixtures of charged colloids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041401. doi: 10.1103/PhysRevE.83.041401. Epub 2011 Apr 4.
5
Electrostatic interactions between Janus particles.
J Chem Phys. 2012 Sep 14;137(10):104910. doi: 10.1063/1.4751482.
6
Poisson-Boltzmann description of interaction forces and aggregation rates involving charged colloidal particles in asymmetric electrolytes.
J Colloid Interface Sci. 2013 Sep 15;406:111-20. doi: 10.1016/j.jcis.2013.05.071. Epub 2013 Jun 14.
7
Forces between single pairs of charged colloids in aqueous salt solutions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031403. doi: 10.1103/PhysRevE.76.031403. Epub 2007 Sep 25.
8
The role of effective charges in the electrophoresis of highly charged colloids.
J Phys Condens Matter. 2010 Dec 15;22(49):494102. doi: 10.1088/0953-8984/22/49/494102.
9
Comment on "Monte carlo study of structural ordering in charged colloids using a long-range attractive interaction".
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):980-2. doi: 10.1103/physreve.61.980.
10
Interaction forces, heteroaggregation, and deposition involving charged colloidal particles.
J Phys Chem B. 2014 Jun 12;118(23):6346-55. doi: 10.1021/jp503564p. Epub 2014 Jun 2.

本文引用的文献

1
Charge Regulation Effects in Nanoparticle Self-Assembly.
Phys Rev Lett. 2021 Apr 2;126(13):138003. doi: 10.1103/PhysRevLett.126.138003.
2
Simulations of ionization equilibria in weak polyelectrolyte solutions and gels.
Soft Matter. 2019 Feb 6;15(6):1155-1185. doi: 10.1039/c8sm02085j.
3
General theory of charge regulation and surface differential capacitance.
J Chem Phys. 2018 Sep 14;149(10):104701. doi: 10.1063/1.5045237.
4
Cardiovascular and lung mesh generation based on centerlines.
Int J Numer Method Biomed Eng. 2013 Jun;29(6):665-82. doi: 10.1002/cnm.2549. Epub 2013 Apr 19.
5
6
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.
Commun Comput Phys. 2012;11(1):179-214. doi: 10.4208/cicp.081009.130611a.
10
Measuring colloidal forces with the magnetic chaining technique.
Eur Phys J E Soft Matter. 2009 Feb;28(2):113-23. doi: 10.1140/epje/i2008-10414-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验